I'm new to Python multiprocessing. I don't quite understand the difference between Pool and Process. Can someone suggest which one I should use for my needs?
I have thousands of http GET requests to send. After sending each and getting the response, I want to store to response (a simple int) to a (shared) dict. My final goal is to write all data in the dict to a file.
This is not CPU intensive at all. All my goal is the speed up sending the http GET requests because there are too many. The requests are all isolated and do not depend on each other.
Shall I use Pool or Process in this case?
Thanks!
----The code below is added on 8/28---
I programmed with multiprocessing. The key challenges I'm facing are:
1) GET request can fail sometimes. I have to set 3 retries to minimize the need to rerun my code/all requests. I only want to retry the failed ones. Can I achieve this with async http requests without using Pool?
2) I want to check the response value of every requests, and have exception handling
The code below is simplified from my actual code. It is working fine, but I wonder if it's the most efficient way of doing things. Can anyone give any suggestions? Thanks a lot!
def get_data(endpoint, get_params):
response = requests.get(endpoint, params = get_params)
if response.status_code != 200:
raise Exception("bad response for " + str(get_params))
return response.json()
def get_currency_data(endpoint, currency, date):
get_params = {'currency': currency,
'date' : date
}
for attempt in range(3):
try:
output = get_data(endpoint, get_params)
# additional return value check
# ......
return output['value']
except:
time.sleep(1) # I found that sleeping for 1s almost always make the retry successfully
return 'error'
def get_all_data(currencies, dates):
# I have many dates, but not too many currencies
for currency in currencies:
results = []
pool = Pool(processes=20)
for date in dates:
results.append(pool.apply_async(get_currency_data, args=(endpoint, date)))
output = [p.get() for p in results]
pool.close()
pool.join()
time.sleep(10) # Unfortunately I have to give the server some time to rest. I found it helps to reduce failures. I didn't write the server. This is not something that I can control