I am trying to do a sort on key of key-record pairs using apache spark. The key is 10 bytes long and the value is about 90 bytes long. In other words I am trying to replicate the sort benchmark Databricks used to break the sorting record. One of the things I noticed from the documentation is that they sorted on key-line-number pairs as opposed to key-record pairs to probably be cache/tlb friendly. I tried to replicate this approach but have not found a suitable solution. Here is what I have tried:
var keyValueRDD_1 = input.map(x => (x.substring(0, 10), x.substring(12, 13)))
var keyValueRDD_2 = input.map(x => (x.substring(0, 10), x.substring(14, 98))
var result = keyValueRDD_1.sortByKey(true, 1) // assume partitions = 1
var unionResult = result.union(keyValueRDD_2)
var finalResult = unionResult.foldByKey("")(_+_)
When I do a union on the result RDD and keyValueRDD_2 RDD and print the output of the unionResultRDD, the result and keyValueRDD_2 are not interleaved. In other words, it looks like the unionResult RDD has the keyValueRDD_2 contents followed by the result RDD contents. However, when I do a foldByKey operation which combines the values of same key into a single key-value pair, the sorted order is destroyed. I need to do a fold by key operation in order to save the result as the original key-record pair. Is there an alternate rdd function that could be used to achieve this?
Any tips or suggestions would be quite useful. Thanks