I have a Dataset<Row> df
, that contains two columns ("key" and "value") of type string
. df.printSchema(); is giving me the following output:
root
|-- key: string (nullable = true)
|-- value: string (nullable = true)
The content of the value column is actually a csv formated line (coming from a kafka topic), with the last entry of that line representing the class label and all the previous entries beeing the features (first row not included in the dataset):
feature0,feature1,label
0.6720004294237854,-0.4033586564886893,0
0.6659082469383558,0.07688976580256132,0
0.8086502311695247,0.564354801275521,1
Since I would like to train a classifier on this data, I need to transform this representation into a row of type dense vector, containing all the feature values and a column of type double, containing the label value:
root
|-- indexedFeatures: vector (nullable = false)
|-- indexedLabel: double (nullable = false)
How can I do this, using java 1.8 and Spark 2.2.0?
Edit: I got further, but while attempting to make it work with a flexible amount feature dimensions, I got stuck again. I created a follow-up question.
A VectorAssembler (javadocs) can transform the dataset into the required format.
First, the input is split into three columns:
Dataset<FeaturesAndLabelData> featuresAndLabelData = inputDf.select("value").as(Encoders.STRING())
.flatMap(s -> {
String[] splitted = s.split(",");
if (splitted.length == 3) {
return Collections.singleton(new FeaturesAndLabelData(
Double.parseDouble(splitted[0]),
Double.parseDouble(splitted[1]),
Integer.parseInt(splitted[2]))).iterator();
} else {
// apply some error handling...
return Collections.emptyIterator();
}
}, Encoders.bean(FeaturesAndLabelData.class));
The result is then transformed by a VectorAssembler:
VectorAssembler assembler = new VectorAssembler()
.setInputCols(new String[] { "feature1", "feature2" })
.setOutputCol("indexedFeatures");
Dataset<Row> result = assembler.transform(featuresAndLabelData)
.withColumn("indexedLabel", functions.col("label").cast("double"))
.select("indexedFeatures", "indexedLabel");
The result dataframe has the required format:
+----------------------------------------+------------+
|indexedFeatures |indexedLabel|
+----------------------------------------+------------+
|[0.6720004294237854,-0.4033586564886893]|0.0 |
|[0.6659082469383558,0.07688976580256132]|0.0 |
|[0.8086502311695247,0.564354801275521] |1.0 |
+----------------------------------------+------------+
root
|-- indexedFeatures: vector (nullable = true)
|-- indexedLabel: double (nullable = true)
FeaturesAndLabelData is a simple Java bean to make sure that the column names are correct:
public class FeaturesAndLabelData {
private double feature1;
private double feature2;
private int label;
//getters and setters...
}
You have different ways of achieving this.
Create a schema as per your CSV file.
public class CSVData implements Serializable {
String col1;
String col2;
long col3;
String col4;
//getters and setters
}
Then convert the file into an RDD.
JavaSparkContext sc;
JavaRDD<String> data = sc.textFile("path-to-csv-file");
JavaSQLContext sqlContext = new JavaSQLContext(sc);
JavaRDD<Record> csv_rdd = sc.textFile(data).map(
new Function<String, Record>() {
public Record call(String line) throws Exception {
String[] fields = line.split(",");
Record sd = new Record(fields[0], fields[1], fields[2].trim(), fields[3]);
return sd;
}
});
Or
Create a Spark Session to read the file as a Dataset.
SparkSession spark = SparkSession
.builder()
.appName("SparkSample")
.master("local[*]")
.getOrCreate();
//Read file
Dataset<Row> ds = spark.read().text("path-to-csv-file");
or
Dataset<Row> ds = spark.read().csv("path-to-csv-file");
ds.show();