I write a program with tensorflow to process Kaggle's digit-recognizer problem.Program can run normally,but the training accuracy is always low,about 10%,such as following :
step 0, training accuracy 0.11
step 100, training accuracy 0.13
step 200, training accuracy 0.21
step 300, training accuracy 0.12
step 400, training accuracy 0.07
step 500, training accuracy 0.08
step 600, training accuracy 0.15
step 700, training accuracy 0.05
step 800, training accuracy 0.08
step 900, training accuracy 0.12
step 1000, training accuracy 0.05
step 1100, training accuracy 0.09
step 1200, training accuracy 0.12
step 1300, training accuracy 0.1
step 1400, training accuracy 0.08
step 1500, training accuracy 0.11
step 1600, training accuracy 0.17
step 1700, training accuracy 0.13
step 1800, training accuracy 0.11
step 1900, training accuracy 0.13
step 2000, training accuracy 0.07
……
Following is my code:
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, w):
return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
# ksize = [batch, heigh, width, channels], strides=[batch, stride, stride, channels]
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.placeholder(tf.float32, [None, 28, 28, 1])
w_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
w_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
w_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)
# dropout
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# softmax
w_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, w_fc2) + b_fc2)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(10e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
def get_batch(i, size, train, label):
startIndex = (i * size) % 42000
endIndex = startIndex + size
batch_X = train[startIndex : endIndex]
batch_Y = label[startIndex : endIndex]
return batch_X, batch_Y
data = pd.read_csv('train.csv')
train_data = data.drop(['label'], axis=1)
train_data = train_data.values.astype(dtype=np.float32)
train_data = train_data.reshape(42000, 28, 28, 1)
label_data = data['label'].tolist()
label_data = tf.one_hot(label_data, depth=10)
label_data = tf.Session().run(label_data).astype(dtype=np.float64)
batch_size = 100
tf.global_variables_initializer().run()
for i in range(20000):
batch_x, batch_y = get_batch(i, batch_size, train_data, label_data)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x_image: batch_x, y_: batch_y, keep_prob: 1.0})
print("step %d, training accuracy %g" % (i, train_accuracy))
train_step.run(feed_dict={x_image: batch_x, y_: batch_y, keep_prob: 0.9})
I don't know what's wrong with my program.