First of all I'm new to power query, so I'm taking the first steps. But I need to try to deliver sometime at work so I can gain some breathing time to learn.
I have the following table (example):
Orig_Item Alt_Item
5.7 5.10
79.19 79.60
79.60 79.86
10.10
And I need to create a column that will loop the table and display the final Alt_Item
. So the result would be the following:
Orig_Item Alt_Item Final_Item
5.7 5.10 5.10
79.19 79.60 79.86
79.60 79.86 79.86
10.10
Many thanks
Actually, this is far too complicated for a first Power Query experience.
If that's what you've got to do, then so be it, but you should be aware that you are starting with a quite difficult task.
Small detail: I would expect the last Final_Item to be 10.10. According to the example, the Final_Item will be null if Alt_Item is null. If that is not correct, well that would be a nice first step for you to adjust the code below accordingly.
You can create a new blank query, copy and paste this code in the Advanced Editor (replacing the default code) and adjust the Source to your table name.
let
Source = Table.Buffer(Table1),
AddedFinal_Item =
Table.AddColumn(
Source,
"Final_Item",
each if [Alt_Item] = null
then null
else List.Last(
List.Generate(
() => [Final_Item = [Alt_Item], Continue = true],
each [Continue],
each [Final_Item =
Table.First(
Table.SelectRows(
Source,
(x) => x[Orig_Item] = [Final_Item]),
[Alt_Item = "not found"]
)[Alt_Item],
Continue = Final_Item <> "not found"],
each [Final_Item])))
in
AddedFinal_Item
This code uses function List.Generate to perform the looping.
For performance reasons, the table should always be buffered in memory (Table.Buffer), before invoking List.Generate.
List.Generate is one of the most complex Power Query functions.
It requires 4 arguments, each of which is a function in itself.
In this case the first argument starts with () and the other 3 with each (it should be clear from the outline above: they are aligned).
Argument 1 defines the initial values: a record with fields Final_Item and Continue.
Argument 2 is the condition to continue: if an item is found.
Argument 3 is the actual transformation in each iteration: the Source table is searched (with Table.SelectRows) for an Orig_Item equal to Alt_Item. This is wrapped in Table.First, which returns the first record (if any found) and accepts a default value if nothing found, in this case a record with field Alt_Item with value "not found", From this result the value of record field [Alt_Item] is returned, which is either the value of the first record, or "not found" from the default value.
If the value is "not found", then Continue becomes false and the iterations will stop.
Argument 4 is the value that will be returned: Final_Item.
List.Generate returns a list of all values from each iteration. Only the last value is required, so List.Generate is wrapped in List.Last.
Final remark: actual looping is rarely required in Power Query and I think it should be avoided as much as possible. In this case, however, it is a feasible solution as you don't know in advance how many Alt_Items will be encountered.
An alternative for List.Generate is using a resursive function.
Also List.Accumulate is close to looping, but that has a fixed number of iterations.
This can be solved simply with a self-join, the open question is how many layers of indirection you'll be expected to support.
Assuming just one level of indirection, no duplicates on Orig_Item, the solution is:
let
Source = #"Input Table",
SelfJoin1 = Table.NestedJoin( Source, {"Alt_Item"}, Source, {"Orig_Item"}, "_tmp_" ),
Expand1 = ExpandTableColumn( SelfJoin1, "_tmp_", {"Alt_Item"}, {"_lkp_"} ),
ChkJoin1 = Table.AddColumn( Expand1, "Final_Item", each (if [_lkp_] = null then [Alt_Item] else [_lkp_]), type number)
in
ChkJoin1
This is doable with the regular UI, using Merge Queries, then Expand Column and adding a custom column.
If yo want to support more than one level of indirection, turn it into a function to be called X times. For data-driven levels of indirection, you wrap the calls in a list.generate that drop the intermediate tables in a structured column, though that's a much more advanced level of PQ.