通过试图解释蒙提霍尔问题在课堂上的朋友昨天,我们结束了它的编码在Python证明,如果你总是掉,你会赢得2/3倍。 我们想出了这一点:
import random as r
#iterations = int(raw_input("How many iterations? >> "))
iterations = 100000
doors = ["goat", "goat", "car"]
wins = 0.0
losses = 0.0
for i in range(iterations):
n = r.randrange(0,3)
choice = doors[n]
if n == 0:
#print "You chose door 1."
#print "Monty opens door 2. There is a goat behind this door."
#print "You swapped to door 3."
wins += 1
#print "You won a " + doors[2] + "\n"
elif n == 1:
#print "You chose door 2."
#print "Monty opens door 1. There is a goat behind this door."
#print "You swapped to door 3."
wins += 1
#print "You won a " + doors[2] + "\n"
elif n == 2:
#print "You chose door 3."
#print "Monty opens door 2. There is a goat behind this door."
#print "You swapped to door 1."
losses += 1
#print "You won a " + doors[0] + "\n"
else:
print "You screwed up"
percentage = (wins/iterations) * 100
print "Wins: " + str(wins)
print "Losses: " + str(losses)
print "You won " + str(percentage) + "% of the time"
我的朋友认为这是要去了解它的好方法(和是它的一个很好的模拟),但我有我的怀疑和担忧。 它实际上是足够随机的?
我与它的问题是,所有的选择都有点困难的编码。
这对于蒙提霍尔问题了好不好“模拟”? 怎么会?
你能想出一个更好的版本?
Answer 1:
您的解决方案是好的,但如果你想问题的更严格的模拟也提出了(而且有些更高质量的Python ;-),请尝试:
import random
iterations = 100000
doors = ["goat"] * 2 + ["car"]
change_wins = 0
change_loses = 0
for i in xrange(iterations):
random.shuffle(doors)
# you pick door n:
n = random.randrange(3)
# monty picks door k, k!=n and doors[k]!="car"
sequence = range(3)
random.shuffle(sequence)
for k in sequence:
if k == n or doors[k] == "car":
continue
# now if you change, you lose iff doors[n]=="car"
if doors[n] == "car":
change_loses += 1
else:
change_wins += 1
print "Changing has %s wins and %s losses" % (change_wins, change_loses)
perc = (100.0 * change_wins) / (change_wins + change_loses)
print "IOW, by changing you win %.1f%% of the time" % perc
一个典型的输出为:
Changing has 66721 wins and 33279 losses
IOW, by changing you win 66.7% of the time
Answer 2:
你提到的所有的选择都在固定的。但是,如果你仔细看,你会发现,你的想法是“选择”,其实并不选择可言。 蒙蒂的决定是不失一般性,因为他总是选择与它背后的羊门。 你的交换总是由什么蒙蒂选择,而且由于蒙蒂的“选择”,实际上不是一种选择,既不是你的决定。 你的模拟给出了正确的结果..
Answer 3:
我喜欢这样的事情。
#!/usr/bin/python
import random
CAR = 1
GOAT = 0
def one_trial( doors, switch=False ):
"""One trial of the Monty Hall contest."""
random.shuffle( doors )
first_choice = doors.pop( )
if switch==False:
return first_choice
elif doors.__contains__(CAR):
return CAR
else:
return GOAT
def n_trials( switch=False, n=10 ):
"""Play the game N times and return some stats."""
wins = 0
for n in xrange(n):
doors = [CAR, GOAT, GOAT]
wins += one_trial( doors, switch=switch )
print "won:", wins, "lost:", (n-wins), "avg:", (float(wins)/float(n))
if __name__=="__main__":
import sys
n_trials( switch=eval(sys.argv[1]), n=int(sys.argv[2]) )
$ ./montyhall.py True 10000
won: 6744 lost: 3255 avg: 0.674467446745
Answer 4:
我没有听到蒙提霍尔问题之前,我碰到这个问题绊倒了。 我觉得很有意思,所以我读到它,创造了C#的模拟。 这是一种愚蠢的,因为它模拟游戏节目,而不仅仅是问题。
我发表在CodePlex上源和释放:
http://montyhall.codeplex.com
Answer 5:
这里是我的版本...
import random
wins = 0
for n in range(1000):
doors = [1, 2, 3]
carDoor = random.choice(doors)
playerDoor = random.choice(doors)
hostDoor = random.choice(list(set(doors) - set([carDoor, playerDoor])))
# To stick, just comment out the next line.
(playerDoor, ) = set(doors) - set([playerDoor, hostDoor]) # Player swaps doors.
if playerDoor == carDoor:
wins += 1
print str(round(wins / float(n) * 100, 2)) + '%'
Answer 6:
这是一个互动的版本:
from random import shuffle, choice
cars,goats,iters= 0, 0, 100
for i in range(iters):
doors = ['goat A', 'goat B', 'car']
shuffle(doors)
moderator_door = 'car'
#Turn 1:
selected_door = choice(doors)
print selected_door
doors.remove(selected_door)
print 'You have selected a door with an unknown object'
#Turn 2:
while moderator_door == 'car':
moderator_door = choice(doors)
doors.remove(moderator_door)
print 'Moderator has opened a door with ', moderator_door
#Turn 3:
decision=raw_input('Wanna change your door? [yn]')
if decision=='y':
prise = doors[0]
print 'You have a door with ', prise
elif decision=='n':
prise = selected_door
print 'You have a door with ', prise
else:
prise = 'ERROR'
iters += 1
print 'ERROR:unknown command'
if prise == 'car':
cars += 1
elif prise != 'ERROR':
goats += 1
print '==============================='
print ' RESULTS '
print '==============================='
print 'Goats:', goats
print 'Cars :', cars
Answer 7:
我与列表解析解模拟题
from random import randint
N = 1000
def simulate(N):
car_gate=[randint(1,3) for x in range(N)]
gate_sel=[randint(1,3) for x in range(N)]
score = sum([True if car_gate[i] == gate_sel[i] or ([posible_gate for posible_gate in [1,2,3] if posible_gate != gate_sel[i]][randint(0,1)] == car_gate[i]) else False for i in range(N)])
return 'you win %s of the time when you change your selection.' % (float(score) / float(N))
打印模拟(N)
Answer 8:
不是我的样本
# -*- coding: utf-8 -*-
#!/usr/bin/python -Ou
# Written by kocmuk.ru, 2008
import random
num = 10000 # number of games to play
win = 0 # init win count if donot change our first choice
for i in range(1, num): # play "num" games
if random.randint(1,3) == random.randint(1,3): # if win at first choice
win +=1 # increasing win count
print "I donot change first choice and win:", win, " games"
print "I change initial choice and win:", num-win, " games" # looses of "not_change_first_choice are wins if changing
Answer 9:
我发现这是解决问题的最直观的方式。
import random
# game_show will return True/False if the participant wins/loses the car:
def game_show(knows_bayes):
doors = [i for i in range(3)]
# Let the car be behind this door
car = random.choice(doors)
# The participant chooses this door..
choice = random.choice(doors)
# ..so the host opens another (random) door with no car behind it
open_door = random.choice([i for i in doors if i not in [car, choice]])
# If the participant knows_bayes she will switch doors now
if knows_bayes:
choice = [i for i in doors if i not in [choice, open_door]][0]
# Did the participant win a car?
if choice == car:
return True
else:
return False
# Let us run the game_show() for two participants. One knows_bayes and the other does not.
wins = [0, 0]
runs = 100000
for x in range(0, runs):
if game_show(True):
wins[0] += 1
if game_show(False):
wins[1] += 1
print "If the participant knows_bayes she wins %d %% of the time." % (float(wins[0])/runs*100)
print "If the participant does NOT knows_bayes she wins %d %% of the time." % (float(wins[1])/runs*100)
该输出像
If the participant knows_bayes she wins 66 % of the time.
If the participant does NOT knows_bayes she wins 33 % of the time.
Answer 10:
阅读关于今天著名蒙提霍尔问题的一章。 这是我的解决方案。
import random
def one_round():
doors = [1,1,0] # 1==goat, 0=car
random.shuffle(doors) # shuffle doors
choice = random.randint(0,2)
return doors[choice]
#If a goat is chosen, it means the player loses if he/she does not change.
#This method returns if the player wins or loses if he/she changes. win = 1, lose = 0
def hall():
change_wins = 0
N = 10000
for index in range(0,N):
change_wins += one_round()
print change_wins
hall()
Answer 11:
另一个“证据”,这一次与Python 3.注意使用发电机来选择1)蒙蒂开哪个门,以及2)门玩家切换到。
import random
items = ['goat', 'goat', 'car']
num_trials = 100000
num_wins = 0
for trial in range(num_trials):
random.shuffle(items)
player = random.randrange(3)
monty = next(i for i, v in enumerate(items) if i != player and v != 'car')
player = next(x for x in range(3) if x not in (player, monty))
if items[player] == 'car':
num_wins += 1
print('{}/{} = {}'.format(num_wins, num_trials, num_wins / num_trials))
Answer 12:
蒙蒂从未打开与汽车的门 - 这是演出的整点(他是不是你的朋友一有什么是每个门后面的知识)
Answer 13:
另一个代码示例可在: http://standardwisdom.com/softwarejournal/code-samples/monty-hall-python/
该代码是有点长,可能会无法使用一些Python的很酷的功能,但我希望它是很好的可读性。 使用Python的恰恰是因为我没有在任何经验,因此反馈是赞赏。
Answer 14:
下面是不同的变种我觉得最直观的。 希望这可以帮助!
import random
class MontyHall():
"""A Monty Hall game simulator."""
def __init__(self):
self.doors = ['Door #1', 'Door #2', 'Door #3']
self.prize_door = random.choice(self.doors)
self.contestant_choice = ""
self.monty_show = ""
self.contestant_switch = ""
self.contestant_final_choice = ""
self.outcome = ""
def Contestant_Chooses(self):
self.contestant_choice = random.choice(self.doors)
def Monty_Shows(self):
monty_choices = [door for door in self.doors if door not in [self.contestant_choice, self.prize_door]]
self.monty_show = random.choice(monty_choices)
def Contestant_Revises(self):
self.contestant_switch = random.choice([True, False])
if self.contestant_switch == True:
self.contestant_final_choice = [door for door in self.doors if door not in [self.contestant_choice, self.monty_show]][0]
else:
self.contestant_final_choice = self.contestant_choice
def Score(self):
if self.contestant_final_choice == self.prize_door:
self.outcome = "Win"
else:
self.outcome = "Lose"
def _ShowState(self):
print "-" * 50
print "Doors %s" % self.doors
print "Prize Door %s" % self.prize_door
print "Contestant Choice %s" % self.contestant_choice
print "Monty Show %s" % self.monty_show
print "Contestant Switch %s" % self.contestant_switch
print "Contestant Final Choice %s" % self.contestant_final_choice
print "Outcome %s" % self.outcome
print "-" * 50
Switch_Wins = 0
NoSwitch_Wins = 0
Switch_Lose = 0
NoSwitch_Lose = 0
for x in range(100000):
game = MontyHall()
game.Contestant_Chooses()
game.Monty_Shows()
game.Contestant_Revises()
game.Score()
# Tally Up the Scores
if game.contestant_switch and game.outcome == "Win": Switch_Wins = Switch_Wins + 1
if not(game.contestant_switch) and game.outcome == "Win": NoSwitch_Wins = NoSwitch_Wins + 1
if game.contestant_switch and game.outcome == "Lose": Switch_Lose = Switch_Lose + 1
if not(game.contestant_switch) and game.outcome == "Lose": NoSwitch_Lose = NoSwitch_Lose + 1
print Switch_Wins * 1.0 / (Switch_Wins + Switch_Lose)
print NoSwitch_Wins * 1.0 / (NoSwitch_Wins + NoSwitch_Lose)
学习仍然是相同的,即开关增加你中奖,0.665025416127 VS 0.33554730611从上面跑的机会。
Answer 15:
这里有一个我早些时候:
import random
def game():
"""
Set up three doors, one randomly with a car behind and two with
goats behind. Choose a door randomly, then the presenter takes away
one of the goats. Return the outcome based on whether you stuck with
your original choice or switched to the other remaining closed door.
"""
# Neither stick or switch has won yet, so set them both to False
stick = switch = False
# Set all of the doors to goats (zeroes)
doors = [ 0, 0, 0 ]
# Randomly change one of the goats for a car (one)
doors[random.randint(0, 2)] = 1
# Randomly choose one of the doors out of the three
choice = doors[random.randint(0, 2)]
# If our choice was a car (a one)
if choice == 1:
# Then stick wins
stick = True
else:
# Otherwise, because the presenter would take away the other
# goat, switching would always win.
switch = True
return (stick, switch)
我也有代码,运行游戏很多次,和存储在此和样本输出在这个repostory 。
Answer 16:
这里是我的解决方案,用Python实现的MontyHall问题。
该解决方案利用numpy的速度,它也可以让你改变门的数量。
def montyhall(Trials:"Number of trials",Doors:"Amount of doors",P:"Output debug"):
N = Trials # the amount of trial
DoorSize = Doors+1
Answer = (nprand.randint(1,DoorSize,N))
OtherDoor = (nprand.randint(1,DoorSize,N))
UserDoorChoice = (nprand.randint(1,DoorSize,N))
# this will generate a second door that is not the user's selected door
C = np.where( (UserDoorChoice==OtherDoor)>0 )[0]
while (len(C)>0):
OtherDoor[C] = nprand.randint(1,DoorSize,len(C))
C = np.where( (UserDoorChoice==OtherDoor)>0 )[0]
# place the car as the other choice for when the user got it wrong
D = np.where( (UserDoorChoice!=Answer)>0 )[0]
OtherDoor[D] = Answer[D]
'''
IfUserStays = 0
IfUserChanges = 0
for n in range(0,N):
IfUserStays += 1 if Answer[n]==UserDoorChoice[n] else 0
IfUserChanges += 1 if Answer[n]==OtherDoor[n] else 0
'''
IfUserStays = float(len( np.where((Answer==UserDoorChoice)>0)[0] ))
IfUserChanges = float(len( np.where((Answer==OtherDoor)>0)[0] ))
if P:
print("Answer ="+str(Answer))
print("Other ="+str(OtherDoor))
print("UserDoorChoice="+str(UserDoorChoice))
print("OtherDoor ="+str(OtherDoor))
print("results")
print("UserDoorChoice="+str(UserDoorChoice==Answer)+" n="+str(IfUserStays)+" r="+str(IfUserStays/N))
print("OtherDoor ="+str(OtherDoor==Answer)+" n="+str(IfUserChanges)+" r="+str(IfUserChanges/N))
return IfUserStays/N, IfUserChanges/N
Answer 17:
我刚发现中奖的全球比例为50%和亏损的比例为50%......这是怎么打赢或基于选择最后一个选项失去的比例。
- %胜(停留):16.692
- %胜(切换):33.525
- %的损失(停留):33.249
- %损失(开关):16.534
这里是我的代码,从你的不同,+与评论意见,以便您可以用小迭代运行:
import random as r
#iterations = int(raw_input("How many iterations? >> "))
iterations = 100000
doors = ["goat", "goat", "car"]
wins_staying = 0
wins_switching = 0
losses_staying = 0
losses_switching = 0
for i in range(iterations):
# Shuffle the options
r.shuffle(doors)
# print("Doors configuration: ", doors)
# Host will always know where the car is
car_option = doors.index("car")
# print("car is in Option: ", car_option)
# We set the options for the user
available_options = [0, 1 , 2]
# The user selects an option
user_option = r.choice(available_options)
# print("User option is: ", user_option)
# We remove an option
if(user_option != car_option ) :
# In the case the door is a goat door on the user
# we just leave the car door and the user door
available_options = [user_option, car_option]
else:
# In the case the door is the car door
# we try to get one random door to keep
available_options.remove(available_options[car_option])
goat_option = r.choice(available_options)
available_options = [goat_option, car_option]
new_user_option = r.choice(available_options)
# print("User final decision is: ", new_user_option)
if new_user_option == car_option :
if(new_user_option == user_option) :
wins_staying += 1
else :
wins_switching += 1
else :
if(new_user_option == user_option) :
losses_staying += 1
else :
losses_switching += 1
print("%Wins (staying): " + str(wins_staying / iterations * 100))
print("%Wins (switching): " + str(wins_switching / iterations * 100))
print("%Losses (staying) : " + str(losses_staying / iterations * 100))
print("%Losses (switching) : " + str(losses_switching / iterations * 100))
文章来源: Is this a good or bad 'simulation' for Monty Hall? How come?