This question already has an answer here:
-
R keep rows with at least one column greater than value
3 answers
I have a dataset with 70 columns.
I would like to subset entire rows of the dataset where a value in any column 5 through 70 is greater than the value 7.
I have tried the following code, however, I do not want TRUE/FALSE values. I would just like the rows that do not meet the criteria eliminated from the data frame
subset <- (data[, 5:70] > 7)
We can use rowSums
data[rowSums(data[5:70] > 7) > 0, ]
Or with subset
subset(data, rowSums(data[5:70] > 7) > 0)
We can also use filter_at
from dplyr
with any_vars
library(dplyr)
data %>% filter_at(vars(5:70), any_vars(. > 7))
Using reproducible data from mtcars
(stealing idea from @Maurits Evers)
mtcars[rowSums(mtcars[3:11] > 300) > 0, ]
# mpg cyl disp hp drat wt qsec vs am gear carb
#Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
#Duster 360 14.3 8 360 245 3.21 3.570 15.84 0 0 3 4
#Cadillac Fleetwood 10.4 8 472 205 2.93 5.250 17.98 0 0 3 4
#Lincoln Continental 10.4 8 460 215 3.00 5.424 17.82 0 0 3 4
#Chrysler Imperial 14.7 8 440 230 3.23 5.345 17.42 0 0 3 4
#Dodge Challenger 15.5 8 318 150 2.76 3.520 16.87 0 0 3 2
#AMC Javelin 15.2 8 304 150 3.15 3.435 17.30 0 0 3 2
#Camaro Z28 13.3 8 350 245 3.73 3.840 15.41 0 0 3 4
#Pontiac Firebird 19.2 8 400 175 3.08 3.845 17.05 0 0 3 2
#Ford Pantera L 15.8 8 351 264 4.22 3.170 14.50 0 1 5 4
#Maserati Bora 15.0 8 301 335 3.54 3.570 14.60 0 1 5 8
Using filter_at
also gives the same output
mtcars %>% filter_at(vars(3:11), any_vars(. > 300))
say this is your data:
dat <- data.frame(X=sample(1:10, 10, T),
Y = sample(1:10, 10, T),
stringsAsFactors = F)
you can use the subset
command to extract what you want:
sub <- subset(dat, X > 7 | Y > 7)
You can use a combination of apply
with MARGIN = 1
and any
.
Reproducible example:
mtcars[apply(mtcars, 1, function(x) any(x > 300)), ]
# mpg cyl disp hp drat wt qsec vs am gear carb
#Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
#Duster 360 14.3 8 360 245 3.21 3.570 15.84 0 0 3 4
#Cadillac Fleetwood 10.4 8 472 205 2.93 5.250 17.98 0 0 3 4
#Lincoln Continental 10.4 8 460 215 3.00 5.424 17.82 0 0 3 4
#Chrysler Imperial 14.7 8 440 230 3.23 5.345 17.42 0 0 3 4
#Dodge Challenger 15.5 8 318 150 2.76 3.520 16.87 0 0 3 2
#AMC Javelin 15.2 8 304 150 3.15 3.435 17.30 0 0 3 2
#Camaro Z28 13.3 8 350 245 3.73 3.840 15.41 0 0 3 4
#Pontiac Firebird 19.2 8 400 175 3.08 3.845 17.05 0 0 3 2
#Ford Pantera L 15.8 8 351 264 4.22 3.170 14.50 0 1 5 4
#Maserati Bora 15.0 8 301 335 3.54 3.570 14.60 0 1 5 8
Or in your case
data[apply(data[5:70], 1, function(x) any(x > 7)), ]
It's better (faster) to use direct [
indexing instead of subset
, see e.g. Faster way to subset on rows of a data frame in R?