可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
In the software I'm writing, I'm doing millions of multiplication or division by 2 (or powers of 2) of my values. I would really like these values to be int
so that I could access the bitshift operators
int a = 1;
int b = a<<24
However, I cannot, and I have to stick with doubles.
My question is : as there is a standard representation of doubles (sign, exponent, mantissa), is there a way to play with the exponent to get fast multiplications/divisions by a power of 2?
I can even assume that the number of bits is going to be fixed (the software will work on machines that will always have 64 bits long doubles)
P.S : And yes, the algorithm mostly does these operations only. This is the bottleneck (it's already multithreaded).
Edit : Or am I completely mistaken and clever compilers already optimize things for me?
Temporary results (with Qt to measure time, overkill, but I don't care):
#include <QtCore/QCoreApplication>
#include <QtCore/QElapsedTimer>
#include <QtCore/QDebug>
#include <iostream>
#include <math.h>
using namespace std;
int main(int argc, char *argv[])
{
QCoreApplication a(argc, argv);
while(true)
{
QElapsedTimer timer;
timer.start();
int n=100000000;
volatile double d=12.4;
volatile double D;
for(unsigned int i=0; i<n; ++i)
{
//D = d*32; // 200 ms
//D = d*(1<<5); // 200 ms
D = ldexp (d,5); // 6000 ms
}
qDebug() << "The operation took" << timer.elapsed() << "milliseconds";
}
return a.exec();
}
Runs suggest that D = d*(1<<5);
and D = d*32;
run in the same time (200 ms) whereas D = ldexp (d,5);
is much slower (6000 ms). I know that this is a micro benchmark, and that suddenly, my RAM has exploded because Chrome has suddenly asked to compute Pi in my back every single time I run ldexp()
, so this benchmark is worth nothing. But I'll keep it nevertheless.
On the other had, I'm having trouble doing reinterpret_cast<uint64_t *>
because there's a const
violation (seems the volatile
keyword interferes)
回答1:
You can pretty safely assume IEEE 754 formatting, the details of which can get pretty gnarley (esp. when you get into subnormals). In the common cases, however, this should work:
const int DOUBLE_EXP_SHIFT = 52;
const unsigned long long DOUBLE_MANT_MASK = (1ull << DOUBLE_EXP_SHIFT) - 1ull;
const unsigned long long DOUBLE_EXP_MASK = ((1ull << 63) - 1) & ~DOUBLE_MANT_MASK;
void unsafe_shl(double* d, int shift) {
unsigned long long* i = (unsigned long long*)d;
if ((*i & DOUBLE_EXP_MASK) && ((*i & DOUBLE_EXP_MASK) != DOUBLE_EXP_MASK)) {
*i += (unsigned long long)shift << DOUBLE_EXP_SHIFT;
} else if (*i) {
*d *= (1 << shift);
}
}
EDIT: After doing some timing, this method is oddly slower than the double method on my compiler and machine, even stripped to the minimum executed code:
double ds[0x1000];
for (int i = 0; i != 0x1000; i++)
ds[i] = 1.2;
clock_t t = clock();
for (int j = 0; j != 1000000; j++)
for (int i = 0; i != 0x1000; i++)
#if DOUBLE_SHIFT
ds[i] *= 1 << 4;
#else
((unsigned int*)&ds[i])[1] += 4 << 20;
#endif
clock_t e = clock();
printf("%g\n", (float)(e - t) / CLOCKS_PER_SEC);
In the DOUBLE_SHIFT completes in 1.6 seconds, with an inner loop of
movupd xmm0,xmmword ptr [ecx]
lea ecx,[ecx+10h]
mulpd xmm0,xmm1
movupd xmmword ptr [ecx-10h],xmm0
Versus 2.4 seconds otherwise, with an inner loop of:
add dword ptr [ecx],400000h
lea ecx, [ecx+8]
Truly unexpected!
EDIT 2: Mystery solved! One of the changes for VC11 is now it always vectorizes floating point loops, effectively forcing /arch:SSE2, though VC10, even with /arch:SSE2 is still worse with 3.0 seconds with an inner loop of:
movsd xmm1,mmword ptr [esp+eax*8+38h]
mulsd xmm1,xmm0
movsd mmword ptr [esp+eax*8+38h],xmm1
inc eax
VC10 without /arch:SSE2 (even with /arch:SSE) is 5.3 seconds... with 1/100th of the iterations!!, inner loop:
fld qword ptr [esp+eax*8+38h]
inc eax
fmul st,st(1)
fstp qword ptr [esp+eax*8+30h]
I knew the x87 FP stack was aweful, but 500 times worse is kinda ridiculous. You probably won't see these kinds of speedups converting, i.e. matrix ops to SSE or int hacks, since this is the worst case loading into the FP stack, doing one op, and storing from it, but it's a good example for why x87 is not the way to go for anything perf. related.
回答2:
This is one of those highly-application specific things. It may help in some cases and not in others. (In the vast majority of cases, a straight-forward multiplication is still best.)
The "intuitive" way of doing this is just to extract the bits into a 64-bit integer and add the shift value directly into the exponent. (this will work as long as you don't hit NAN or INF)
So something like this:
union{
uint64 i;
double f;
};
f = 123.;
i += 0x0010000000000000ull;
// Check for zero. And if it matters, denormals as well.
Note that this code is not C-compliant in any way, and is shown just to illustrate the idea. Any attempt to implement this should be done directly in assembly or SSE intrinsics.
However, in most cases the overhead of moving the data from the FP unit to the integer unit (and back) will cost much more than just doing a multiplication outright. This is especially the case for pre-SSE era where the value needs to be stored from the x87 FPU into memory and then read back into the integer registers.
In the SSE era, the Integer SSE and FP SSE use the same ISA registers (though they still have separate register files). According the Agner Fog, there's a 1 to 2 cycle penalty for moving data between the Integer SSE and FP SSE execution units. So the cost is much better than the x87 era, but it's still there.
All-in-all, it will depend on what else you have on your pipeline. But in most cases, multiplying will still be faster. I've run into this exact same problem before so I'm speaking from first-hand experience.
Now with 256-bit AVX instructions that only support FP instructions, there's even less of an incentive to play tricks like this.
回答3:
How about ldexp?
Any half-decent compiler will generate optimal code on your platform.
But as @Clinton points out, simply writing it in the "obvious" way should do just as well. Multiplying and dividing by powers of two is child's play for a modern compiler.
Directly munging the floating point representation, besides being non-portable, will almost certainly be no faster (and might well be slower).
And of course, you should not waste time even thinking about this question unless your profiling tool tells you to. But the kind of people who listen to this advice will never need it, and the ones who need it will never listen.
[update]
OK, so I just tried ldexp with g++ 4.5.2. The cmath
header inlines it as a call to __builtin_ldexp
, which in turn...
...emits a call to the libm ldexp
function. I would have thought this builtin would be trivial to optimize, but I guess the GCC developers never got around to it.
So, multiplying by 1 << p
is probably your best bet, as you have discovered.
回答4:
The fastest way to do this is probably:
x *= (1 << p);
This sort of thing may simply be done by calling an machine instruction to add p
to the exponent. Telling the compiler to instead extract the some bits with a mask and doing something manually to it will probably make things slower, not faster.
Remember, C/C++ is not assembly language. Using a bitshift operator does not necessarily compile to a bitshift assembly operation, not does using multiplication necessarily compile to multiplication. There's all sorts of weird and wonderful things going on like what registers are being used and what instructions can be run simultaneously which I'm not smart enough to understand. But your compiler, with many man years of knowledge and experience and lots of computational power, is much better at making these judgements.
p.s. Keep in mind, if your doubles are in an array or some other flat data structure, your compiler might be really smart and use SSE to multiple 2, or even 4 doubles at the same time. However, doing a lot of bit shifting is probably going to confuse your compiler and prevent this optimisation.
回答5:
What other operations does this algorithm require? You might be able to break your floats into int pairs (sign/mantissa and magnitude), do your processing, and reconstitute them at the end.
回答6:
Multiplying by 2 can be replaced by an addition: x *= 2
is equivalent to x += x
.
Division by 2 can be replaced by multiplication by 0.5. Multiplication is usually significantly faster than division.
回答7:
Although there is little/no practical benefit to treating powers of two specially for float of double types there is a case for this for double-double types. Double-double multiplication and division is complicated in general but is trivial for multiplying and dividing by a power of two.
E.g. for
typedef struct {double hi; double lo;} doubledouble;
doubledouble x;
x.hi*=2, x.lo*=2; //multiply x by 2
x.hi/=2, x.lo/=2; //divide x by 2
In fact I have overloaded <<
and >>
for doubledouble
so that it's analogous to integers.
//x is a doubledouble type
x << 2 // multiply x by four;
x >> 3 // divide x by eight.
回答8:
Depending on what you're multiplying, if you have data that is recurring enough, a look up table might provide better performance, at the expense of memory.