我想实现的一个项目我工作在C ++生产者/消费者模型的多线程程序。 其基本思路是,主线程创建第二个线程,以观看新数据,处理数据的串行端口,并把结果在定期由主线程轮询的缓冲区。 我以前从来没有写多线程程序。 我一直在阅读大量教程,但他们都在C.我觉得我有一个手柄上的基本概念,但我想C ++ IFY它。 对于缓冲,我要创建具有内置的互斥保护数据类。这是我想出了。
1)我要对这个错误的方式? 有没有办法实现保护数据类的明智之选?
2)将在下面的代码发生什么,如果两个线程试图调用ProtectedBuffer::add_back()
在同一时间?
#include <deque>
#include "pthread.h"
template <class T>
class ProtectedBuffer {
std::deque<T> buffer;
pthread_mutex_t mutex;
public:
void add_back(T data) {
pthread_mutex_lock(&mutex);
buffer.push_back(data);
pthread_mutex_unlock(&mutex);
}
void get_front(T &data) {
pthread_mutex_lock(&mutex);
data = buffer.front();
buffer.pop_front();
pthread_mutex_unlock(&mutex);
}
};
编辑:感谢所有伟大的建议。 我试过下面来实现它们。 我还添加了一些错误检查,所以如果一个线程以某种方式设法试图锁定相同的互斥两次会优雅地失败。 我认为。
#include "pthread.h"
#include <deque>
class Lock {
pthread_mutex_t &m;
bool locked;
int error;
public:
explicit Lock(pthread_mutex_t & _m) : m(_m) {
error = pthread_mutex_lock(&m);
if (error == 0) {
locked = true;
} else {
locked = false;
}
}
~Lock() {
if (locked)
pthread_mutex_unlock(&m);
}
bool is_locked() {
return locked;
}
};
class TryToLock {
pthread_mutex_t &m;
bool locked;
int error;
public:
explicit TryToLock(pthread_mutex_t & _m) : m(_m) {
error = pthread_mutex_trylock(&m);
if (error == 0) {
locked = true;
} else {
locked = false;
}
}
~TryToLock() {
if (locked)
pthread_mutex_unlock(&m);
}
bool is_locked() {
return locked;
}
};
template <class T>
class ProtectedBuffer{
pthread_mutex_t mutex;
pthread_mutexattr_t mattr;
std::deque<T> buffer;
bool failbit;
ProtectedBuffer(const ProtectedBuffer& x);
ProtectedBuffer& operator= (const ProtectedBuffer& x);
public:
ProtectedBuffer() {
pthread_mutexattr_init(&mattr);
pthread_mutexattr_settype(&mattr, PTHREAD_MUTEX_ERRORCHECK);
pthread_mutex_init(&mutex, &mattr);
failbit = false;
}
~ProtectedBuffer() {
pthread_mutex_destroy(&mutex);
pthread_mutexattr_destroy(&mattr);
}
void add_back(T &data) {
Lock lck(mutex);
if (!lck.locked()) {
failbit = true;
return;
}
buffer.push_back(data);
failbit = false;
}
void get_front(T &data) {
Lock lck(mutex);
if (!lck.locked()) {
failbit = true;
return;
}
if (buffer.empty()) {
failbit = true;
return;
}
data = buffer.front();
buffer.pop_front();
failbit = false;
}
void try_get_front(T &data) {
TryToLock lck(mutex);
if (!lck.locked()) {
failbit = true;
return;
}
if (buffer.empty()) {
failbit = true;
return;
}
data = buffer.front();
buffer.pop_front();
failbit = false;
}
void try_add_back(T &data) {
TryToLock lck(mutex);
if (!lck.locked()) {
failbit = true;
return;
}
buffer.push_back(data);
failbit = false;
}
};