Consider the following function:
foo =
[1,2,3] >>=
return . (*2) . (+1)
For better readability and logic, I would like to move my pure functions (*2)
and (+1)
to the left of the return. I could achieve this like this:
infixr 9 <.
(<.) :: (a -> b) -> (b -> c) -> (a -> c)
(<.) f g = g . f
bar =
[1,2,3] >>=
(+1) <.
(*2) <.
return
However, I don't like the right-associativity of (<.)
.
Let's introduce a function leftLift
:
leftLift :: Monad m => (a -> b) -> a -> m b
leftLift f = return . f
baz =
[1,2,3] >>=
leftLift (+1) >>=
leftLift (*2) >>=
return
I quite like this. Another possibility would be to define a variant of bind
:
infixl 1 >>$
(>>$) :: Monad m => m a -> (a -> b) -> m b
(>>$) m f = m >>= return . f
qux =
[1,2,3] >>$
(+1) >>$
(*2) >>=
return
I am not sure whether that is a good idea, since it would not allow me to use do
notation should I want that. leftLift
I can use with do
:
bazDo = do
x <- [1,2,3]
y <- leftLift (+1) x
z <- leftLift (*2) y
return z
I didn't find a function on Hoogle with the signature of leftLift
. Does such a function exist, and, if, what is it called? If not, what should I call it? And what would be the most idiomatic way of doing what I am trying to do?
Edit: Here's a version inspired by @dunlop's answer below:
infixl 4 <&>
(<&>) :: Functor f => f a -> (a -> b) -> f b
(<&>) = flip fmap
blah =
[1,2,3] <&>
(+1) <&>
(*2) >>=
return
I should also add that I was after a bind
-variant, because I wanted to write my code in point-free style. For do
-notation, I guess I don't need to "pretend" that I'm doing anything monadic, so I can use let
s.