How to get a List from a String in PySpark

2019-07-29 07:14发布

问题:

Is there something like an eval function equivalent in PySpark.

I am trying to convert Python code into PySpark

I am Querying a Dataframe and one of the Column has the Data as shown below but in String Format.

[{u'date': u'2015-02-08', u'by': u'abc@gg.com', u'value': u'NA'}, {u'date': u'2016-02-08', u'by': u'dfg@yaa.com', u'value': u'applicable'}, {u'date': u'2017-02-08', u'by': u'wrwe@hot.com', u'value': u'ufc'}]

Assume that 'x' is the column which holds this value in the Dataframe.

Now i want to pass in that String column 'x' and get the List so that i can pass it to mapPartition function.

I want to avoid iterating to each row on my Driver that's the reason i am thinking this way.

In Python using eval() function if used: I get below output:

x = "[{u'date': u'2015-02-08', u'by': u'abc@gg.com', u'value': u'NA'}, {u'date': u'2016-02-08', u'by': u'dfg@yaa.com', u'value': u'applicable'}, {u'date': u'2017-02-08', u'by': u'wrwe@hot.com', u'value': u'ufc'}]"

list = eval(x)

for i in list:  print i

Output: (This is what i want in PySpark as well)

{u'date': u'2015-02-08', u'by': u'abc@gg.com', u'value': u'NA'}
{u'date': u'2016-02-08', u'by': u'dfg@yaa.com', u'value': u'applicable'}
{u'date': u'2017-02-08', u'by': u'wrwe@hot.com', u'value': u'ufc'}

How to do this in PySpark ??

回答1:

You can benefit by using from_json function to convert your json string to actual json. For that you will have to define a schema matching to your json string. And finally use explode function to separate the struct array to different rows as you did with eval.

If you have a data as

x = "[{u'date': u'2015-02-08', u'by': u'abc@gg.com', u'value': u'NA'}, {u'date': u'2016-02-08', u'by': u'dfg@yaa.com', u'value': u'applicable'}, {u'date': u'2017-02-08', u'by': u'wrwe@hot.com', u'value': u'ufc'}]"

Then dataframe is created

df = sqlContext.createDataFrame([(x,),], ["x"])

+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|x                                                                                                                                                                                                              |
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|[{u'date': u'2015-02-08', u'by': u'abc@gg.com', u'value': u'NA'}, {u'date': u'2016-02-08', u'by': u'dfg@yaa.com', u'value': u'applicable'}, {u'date': u'2017-02-08', u'by': u'wrwe@hot.com', u'value': u'ufc'}]|
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+


root
 |-- x: string (nullable = true)

Using jsons

As I had explained, you would need a schema, regexp_replace function, from_json function and explode function as

from pyspark.sql import types as T
schema = T.ArrayType(T.StructType([T.StructField('date', T.StringType()), T.StructField('by', T.StringType()), T.StructField('value', T.StringType())]))

from pyspark.sql import functions as F
df = df.withColumn("x", F.explode(F.from_json(F.regexp_replace(df['x'], "(u')", "'"), schema=schema)))

which should give you

+-----------------------------------+
|x                                  |
+-----------------------------------+
|[2015-02-08,abc@gg.com,NA]         |
|[2016-02-08,dfg@yaa.com,applicable]|
|[2017-02-08,wrwe@hot.com,ufc]      |
+-----------------------------------+

root
 |-- x: struct (nullable = true)
 |    |-- date: string (nullable = true)
 |    |-- by: string (nullable = true)
 |    |-- value: string (nullable = true)

If you require the json strings as mentioned in the question then you can use to_json function as

df = df.withColumn("x", F.to_json(df['x']))

which will give you

+-------------------------------------------------------------+
|x                                                            |
+-------------------------------------------------------------+
|{"date":"2015-02-08","by":"abc@gg.com","value":"NA"}         |
|{"date":"2016-02-08","by":"dfg@yaa.com","value":"applicable"}|
|{"date":"2017-02-08","by":"wrwe@hot.com","value":"ufc"}      |
+-------------------------------------------------------------+

Using strings only

If you don't want to go through all the complexities of jsons then you can simply work with strings. For that you would need nested regex_replace, split and explode functions as

from pyspark.sql import functions as F
df = df.withColumn("x", F.explode(F.split(F.regexp_replace(F.regexp_replace(F.regexp_replace(df['x'], "(u')", "'"), "[\\[\\]\s]", ""), "},\\{", "};&;{"), ";&;")))

which should give you

+-------------------------------------------------------------+
|x                                                            |
+-------------------------------------------------------------+
|{'date':'2015-02-08','by':'abc@gg.com','value':'NA'}         |
|{'date':'2016-02-08','by':'dfg@yaa.com','value':'applicable'}|
|{'date':'2017-02-08','by':'wrwe@hot.com','value':'ufc'}      |
+-------------------------------------------------------------+