SQL问题 - 计算最高天数序列(SQL issue - calculate max days se

2019-07-29 06:06发布

没有与访问数据的表:

uid (INT) | created_at (DATETIME)

我想找到多少天连续用户访问过我们的应用程序。 因此,举例来说:

SELECT DISTINCT DATE(created_at) AS d FROM visits WHERE uid = 123

将返回:

     d      
------------
 2012-04-28
 2012-04-29
 2012-04-30
 2012-05-03
 2012-05-04

有5个记录和两个间隔 - 3天(4月28日至三十〇日)和2天(5月3日至四日)。

我的问题是如何找到用户已访问过连续应用(3天中的例子)的天数上限。 试图找到在SQL文档合适的功能,但没有成功。 我缺少的东西吗?


UPD:谢谢你们为您解答! 其实,我和Vertica的分析数据库(http://vertica.com/)的工作,然而,这是一种非常罕见的解决方案,只有少数人有这方面的经验。 虽然它支持SQL-99标准。

嗯,大部分的解决方案的工作,稍作修改。 最后,我创建了自己的查询的版本:

-- returns starts of the vitit series 
SELECT t1.d as s FROM testing t1
LEFT JOIN testing t2 ON DATE(t2.d) = DATE(TIMESTAMPADD('day', -1, t1.d))
WHERE t2.d is null GROUP BY t1.d

          s          
---------------------
 2012-04-28 01:00:00
 2012-05-03 01:00:00

-- returns end of the vitit series 
SELECT t1.d as f FROM testing t1
LEFT JOIN testing t2 ON DATE(t2.d) = DATE(TIMESTAMPADD('day', 1, t1.d))
WHERE t2.d is null GROUP BY t1.d

          f          
---------------------
 2012-04-30 01:00:00
 2012-05-04 01:00:00

所以,现在只是我们需要做的是通过行索引以某种方式加入他们的行列,例如。

SELECT s, f, DATEDIFF(day, s, f) + 1 as seq FROM (
    SELECT t1.d as s, ROW_NUMBER() OVER () as o1 FROM testing t1
    LEFT JOIN testing t2 ON DATE(t2.d) = DATE(TIMESTAMPADD('day', -1, t1.d))
    WHERE t2.d is null GROUP BY t1.d
) tbl1 LEFT JOIN (
    SELECT t1.d as f, ROW_NUMBER() OVER () as o2 FROM testing t1
    LEFT JOIN testing t2 ON DATE(t2.d) = DATE(TIMESTAMPADD('day', 1, t1.d))
    WHERE t2.d is null GROUP BY t1.d
) tbl2 ON o1 = o2 

输出示例:

          s          |          f          | seq 
---------------------+---------------------+-----
 2012-04-28 01:00:00 | 2012-04-30 01:00:00 |   3
 2012-05-03 01:00:00 | 2012-05-04 01:00:00 |   2

Answer 1:

另一种方法,在最短的,做自连接:

with grouped_result as
(
    select 
       sr.d,
       sum((fr.d is null)::int) over(order by sr.d) as group_number
    from tbl sr
    left join tbl fr on sr.d = fr.d + interval '1 day'
)
select d, group_number, count(d) over m as consecutive_days
from grouped_result
window m as (partition by group_number)

输出:

          d          | group_number | consecutive_days 
---------------------+--------------+------------------
 2012-04-28 08:00:00 |            1 |                3
 2012-04-29 08:00:00 |            1 |                3
 2012-04-30 08:00:00 |            1 |                3
 2012-05-03 08:00:00 |            2 |                2
 2012-05-04 08:00:00 |            2 |                2
(5 rows)

现场试验: http://www.sqlfiddle.com/#!1/93789/1

SR =第二行,FR =第一行(或者前一行? ツ )。 基本上我们做了一回追踪,它是在不支持数据库模拟滞后LAG (Postgres的支持LAG,但解决的办法是很长 ,因为窗口不支持嵌套窗口)。 所以在这个查询中,我们使用一种混合的方法,模拟通过LAG加入,然后用反对SUM窗口,这将产生组号

UPDATE

忘了最终的查询,上述查询说明组编号的基础,需要变身的是这个:

with grouped_result as
(
    select 
       sr.d,
       sum((fr.d is null)::int) over(order by sr.d) as group_number
    from tbl sr
    left join tbl fr on sr.d = fr.d + interval '1 day'
)
select min(d) as starting_date, max(d) as end_date, count(d) as consecutive_days
from grouped_result
group by group_number
-- order by consecutive_days desc limit 1


STARTING_DATE                END_DATE                     CONSECUTIVE_DAYS
April, 28 2012 08:00:00-0700 April, 30 2012 08:00:00-0700 3
May, 03 2012 08:00:00-0700   May, 04 2012 08:00:00-0700   2

UPDATE

我知道为什么我的其它解决方案 ,使用窗函数变得长了,它成了长在我试图说明组编号,并通过组计数的逻辑。 如果我切给像我追MySql的方法 ,即窗口函数可以更短。 话虽如此,这是我的老窗函数的方法,虽然现在好了:

with headers as
(
    select 
      d,lag(d) over m is null or d - lag(d) over m  <> interval '1 day' as header
    from tbl
    window m as (order by d)
)      
,sequence_group as
(
    select d, sum(header::int) over (order by d) as group_number
    from headers  
)
select min(d) as starting_date,max(d) as ending_date,count(d) as consecutive_days
from sequence_group
group by group_number
-- order by consecutive_days desc limit 1

现场试验: http://www.sqlfiddle.com/#!1/93789/21



Answer 2:

在MySQL中,你可以这样做:

SET @nextDate = CURRENT_DATE;
SET @RowNum = 1;

SELECT MAX(RowNumber) AS ConecutiveVisits
FROM    (   SELECT  @RowNum := IF(@NextDate = Created_At, @RowNum + 1, 1) AS RowNumber,
                    Created_At,
                    @NextDate := DATE_ADD(Created_At, INTERVAL 1 DAY) AS NextDate
            FROM    Visits
            ORDER BY Created_At
        ) Visits

这里的例子:

http://sqlfiddle.com/#!2/6e035/8

不过我不是100%肯定这是做到这一点的最好办法。

在PostgreSQL:

 ;WITH RECURSIVE VisitsCTE AS
 (  SELECT  Created_At, 1 AS ConsecutiveDays
    FROM    Visits
    UNION ALL
    SELECT  v.Created_At, ConsecutiveDays + 1
    FROM    Visits v
            INNER JOIN VisitsCTE cte
                ON 1 + cte.Created_At = v.Created_At
)
SELECT  MAX(ConsecutiveDays) AS ConsecutiveDays
FROM    VisitsCTE

这里的例子:

http://sqlfiddle.com/#!1/16c90/9



Answer 3:

我知道PostgreSQL有类似公用表表达式为MSSQL可用的东西。 我没那么熟悉PostgreSQL的,但下面的代码适用于MSSQL和你想要做什么。

create table #tempdates (
    mydate date
)

insert into #tempdates(mydate) values('2012-04-28')
insert into #tempdates(mydate) values('2012-04-29')
insert into #tempdates(mydate) values('2012-04-30')
insert into #tempdates(mydate) values('2012-05-03')
insert into #tempdates(mydate) values('2012-05-04');

with maxdays (s, e, c)
as
(
    select mydate, mydate, 1
    from #tempdates
    union all
    select m.s, mydate, m.c + 1
    from #tempdates t
    inner join maxdays m on DATEADD(day, -1, t.mydate)=m.e
)
select MIN(o.s),o.e,max(o.c)
from (
  select m1.s,max(m1.e) e,max(m1.c) c
  from maxdays m1
  group by m1.s
) o
group by o.e

drop table #tempdates

而这里的SQL小提琴: http://sqlfiddle.com/#!3/42b38/2



Answer 4:

所有的都很好的答案,但我想我应该说明使用特定于Vertica的分析能力(毕竟它是什么您支付部分)另一种方法作出贡献。 我保证最终查询短。

首先,使用查询conditional_true_event()。 从Vertica的文档:

分配事件画面号为每一行,从0开始,并且当布尔参数表达式的结果判断为真加1的数目。

这个例子查询看起来是这样的:

select uid, created_at, 
       conditional_true_event( created_at - lag(created_at) > '1 day' ) 
       over (partition by uid order by created_at) as seq_id
from visits;

输出:

uid  created_at           seq_id  
---  -------------------  ------  
123  2012-04-28 00:00:00  0       
123  2012-04-29 00:00:00  0       
123  2012-04-30 00:00:00  0       
123  2012-05-03 00:00:00  1       
123  2012-05-04 00:00:00  1       
123  2012-06-04 00:00:00  2       
123  2012-06-04 00:00:00  2     

现在,最终的查询变得容易:

select uid, seq_id, count(1) num_days, min(created_at) s, max(created_at) f
from
(
    select uid, created_at, 
       conditional_true_event( created_at - lag(created_at) > '1 day' ) 
       over (partition by uid order by created_at) as seq_id
    from visits
) as seq
group by uid, seq_id;

最终输出:

uid  seq_id  num_days  s                    f                    
---  ------  --------  -------------------  -------------------  
123  0       3         2012-04-28 00:00:00  2012-04-30 00:00:00  
123  1       2         2012-05-03 00:00:00  2012-05-04 00:00:00  
123  2       2         2012-06-04 00:00:00  2012-06-04 00:00:00  

最后一点: num_days实际上是内部查询的行数。 如果有两个'2012-04-28'的原始表(即重复)访问,您可能要解决这一点。



Answer 5:

下面列出的是甲骨文友好,并且不需要递归的逻辑。

;WITH
  visit_dates (
    visit_id,
    date_id,
    group_id
  )
AS
(
  SELECT
    ROW_NUMBER() OVER (ORDER BY TRUNC(created_at)),
    TRUNC(SYSDATE) - TRUNC(created_at),
    TRUNC(SYSDATE) - TRUNC(created_at) - ROW_NUMBER() OVER (ORDER BY TRUNC(created_at))
  FROM
    visits
  GROUP BY
    TRUNC(created_at)
)
,
  group_duration (
    group_id,
    duration
  )
AS
(
  SELECT
    group_id,
    MAX(date_id) - MIN(date_id) + 1  AS duration
  FROM
    visit_dates
  GROUP BY
    group_id
)
SELECT
  MAX(duration)  AS max_duration
FROM
  group_duration


Answer 6:

PostgreSQL的:

with headers as
(
    select 
        d,
        lag(d) over m is null or d - lag(d) over m  <> interval '1 day' as header

    from tbl
    window m as (order by d)
)      
,sequence_group as
(
    select d, sum(header::int) over m as group_number 
    from headers
    window m as (order by d)
)
,consecutive_list as
(
    select d, group_number, count(d) over m as consecutive_count
    from sequence_group 
    window m as (partition by group_number)
)
select * from consecutive_list

分而治之的方法:3个步骤

第一步,找到标题:

with headers as
(
    select 
        d,
        lag(d) over m is null or d - lag(d) over m  <> interval '1 day' as header

    from tbl
    window m as (order by d)
)
select * from headers

输出:

          d          | header 
---------------------+--------
 2012-04-28 08:00:00 | t
 2012-04-29 08:00:00 | f
 2012-04-30 08:00:00 | f
 2012-05-03 08:00:00 | t
 2012-05-04 08:00:00 | f
(5 rows)

第二步骤中,候分组:

with headers as
(
    select 
        d,
        lag(d) over m is null or d - lag(d) over m  <> interval '1 day' as header

    from tbl
    window m as (order by d)
)      
,sequence_group as
(
    select d, sum(header::int) over m as group_number 
    from headers
    window m as (order by d)
)
select * from sequence_group

输出:

          d          | group_number 
---------------------+--------------
 2012-04-28 08:00:00 |            1
 2012-04-29 08:00:00 |            1
 2012-04-30 08:00:00 |            1
 2012-05-03 08:00:00 |            2
 2012-05-04 08:00:00 |            2
(5 rows)

第三步,计算天数上限:

with headers as
(
    select 
        d,
        lag(d) over m is null or d - lag(d) over m  <> interval '1 day' as header

    from tbl
    window m as (order by d)
)      
,sequence_group as
(
    select d, sum(header::int) over m as group_number 
    from headers
    window m as (order by d)
)
,consecutive_list as
(
select d, group_number, count(d) over m as consecutive_count
from sequence_group 
window m as (partition by group_number)
)
select * from consecutive_list

输出:

          d          | group_number | consecutive_count 
---------------------+--------------+-----------------
 2012-04-28 08:00:00 |            1 |               3
 2012-04-29 08:00:00 |            1 |               3
 2012-04-30 08:00:00 |            1 |               3
 2012-05-03 08:00:00 |            2 |               2
 2012-05-04 08:00:00 |            2 |               2
(5 rows)


Answer 7:

这是MySQL,最短的,并使用最少的变量(一个变量只):

select 
   min(d) as starting_date, max(d) as ending_date, 
   count(d) as consecutive_days
from
(
  select 
     sr.d,
     IF(fr.d is null,@group_number := @group_number + 1,@group_number) 
        as group_number
  from tbl sr
  left join tbl fr on sr.d = adddate(fr.d,interval 1 day)
  cross join (select @group_number := 0) as grp
) as x
group by group_number

输出:

STARTING_DATE                  ENDING_DATE                  CONSECUTIVE_DAYS
April, 28 2012 08:00:00-0700   April, 30 2012 08:00:00-0700 3
May, 03 2012 08:00:00-0700     May, 04 2012 08:00:00-0700   2

现场试验: http://www.sqlfiddle.com/#!2/65169/1



Answer 8:

对于PostgreSQL 8.4或更高版本 ,有一个与窗口的功能,没有一个短而干净的方式JOIN
我期望这是最快解决方案至今发布:

WITH x AS (
    SELECT created_at AS d
         , lag(created_at) OVER (ORDER BY created_at) = (created_at - 1) AS nu
    FROM   visits
    WHERE  uid = 1
    )
   , y AS (
    SELECT d, count(NULLIF(nu, TRUE)) OVER (ORDER BY d) AS seq
    FROM   x
    )
SELECT count(*) AS max_days, min(d) AS seq_from,  max(d) AS seq_to
FROM   y
GROUP  BY seq
ORDER  BY 1 DESC
LIMIT  1;

返回:

max_days | seq_from   | seq_to
---------+------------+-----------
3        | 2012-04-28 | 2012-04-30

假设created_atdateunique

  1. 在CTE X:每一天,我们的用户访问,请检查是否他昨天来这里了。 要计算“昨天”只是使用created_at - 1第一行是一个特例,将产生NULL在这里。

  2. 在CTE Y:计算运行计数“天无昨天为止”( seq )每天。 NULL值不计,所以count(NULLIF(nu, TRUE))是fastes和最短的路,还覆盖的特殊情况。

  3. 最后,每组天seq和度日如年。 虽然是在它我加了序列的第一天和最后一天。 ORDER BY序列的长度,并挑选最长的一个。



Answer 9:

见状OP的查询方法为他们的Vertica的数据库,我试图使两个联接在同一时间运行:

这些PostgreSQL及SQL Server查询版本应在Vertica的两个工作

PostgreSQL的版本:

select 
  min(gr.d) as start_date,
  max(gr.d) as end_date,
  date_part('day', max(gr.d) - min(gr.d))+1 as consecutive_days
from 
(
  select 
  cr.d, (row_number() over() - 1) / 2 as pair_number
  from tbl cr   
  left join tbl pr on pr.d = cr.d - interval '1 day'
  left join tbl nr on nr.d = cr.d + interval '1 day'
  where pr.d is null <> nr.d is null
) as gr
group by pair_number
order by start_date

关于pr.d is null <> nr.d is null 。 这意味着,它要么上一行是空或下一行是空的,但他们永远都为空,所以这基本上消除了非连续的日期,如非连续的日期以前和下一行是空值(这基本上给了我们只是页眉和页脚只)的所有日期。 这也被称为一个XOR操作

如果我们只剩下连续的日期,我们现在可以通过ROW_NUMBER它们配对:

(row_number() over() - 1) / 2 as pair_number

row_number()从1开始,我们需要用1减去它(我们也可以加用1来代替),然后我们除以二; 这使得彼此相邻的成对的日期

现场试验: http://www.sqlfiddle.com/#!1/fc440/7


这是SQL Server版本:

select 
  min(gr.d) as start_date,
  max(gr.d) as end_date,
  datediff(day, min(gr.d),max(gr.d)) +1 as consecutive_days
from 
(
  select 
     cr.d, (row_number() over(order by cr.d) - 1) / 2 as pair_number
  from tbl cr   
  left join tbl pr on pr.d = dateadd(day,-1,cr.d)
  left join tbl nr on nr.d = dateadd(day,+1,cr.d)
  where         
       case when pr.d is null then 1 else 0 end
    <> case when nr.d is null then 1 else 0 end
) as gr
group by pair_number
order by start_date

相同的逻辑如上,除日期函数人工差异。 和SQL Server需要ORDER BY其条款OVER ,而PostgreSQL的OVER可以留空。

SQL Server有没有一流的布尔值,这就是为什么我们不能直接比较布尔值:

pr.d is null <> nr.d is null

我们必须在SQL服务器这样做:

   case when pr.d is null then 1 else 0 end
<> case when nr.d is null then 1 else 0 end

现场试验: http://www.sqlfiddle.com/#!3/65df2/17



Answer 10:

目前已经过几次这个问题的答案。 但是,SQL语句都显得过于复杂。 这可以用基本的SQL,这是一种枚举行,有的日期运算来完成。

关键的观察是,如果你有一大堆的天,并有一个整数的并行序列,那么,这种差异的时候,天都在序列中的常量日期。

下面的查询使用此观察回答原来的问题:

select uid, min(d) as startdate, count(*) as numdaysinseq
from 
(
   select uid, d, adddate(d, interval -offset day) as groupstart
   from 
   (
     select uid, d, row_number() over (partition by uid order by date) as offset
     from 
     (
       SELECT DISTINCT uid, DATE(created_at) AS d
       FROM visits
     ) t
   ) t
) t

可惜的是,MySQL不具备row_number()函数。 然而,有一个变通使用变量(和大多数其他数据库确实有这个功能)。



文章来源: SQL issue - calculate max days sequence