I have a set of 100 files. 50 files containing census information for each US state. The other fifty are geographic data that need to be merged with the correct file for each state.
For each state, the census file and its corresponding geo file are related by a common variable, LOGRECNO, that is the 10th column in the census file and the 7th column in the geo file.
The problem is that the geo file has more rows than the census file; my census data does not cover certain subsets of geographic locations and hence has fewer rows than the geo data file.
How can I merge the census data with the geographic date (keeping only the rows/geo locations where census data exists, don't care about the rest)?
I am a newbie to Python and I somewhat know how to do basic csv file i/o in python. Manipulating 2 csvs at the same time is proving confusing.
Example:
sample_state_census.csv
Varname 1 Varname 2 ... Varname 10 (LOGRECNO) ... Varname 16000
xxx xxx ... 1 ... xxx
xxx xxx ... 2 ... xxx
...
...
xxx xxx ... 514 ... xxx
xxx xxx ... 1312 ... xxx
...
...
xxx xxx ... 1500 ... xxx
sample_state_geo.csv
GeoVarname 1 GeoVarname 2 ... GeoVarname 7 (LOGRECNO) ... GeoVarname 65
yyy yyy ... 1 ... yyy
yyy yyy ... 2 ... yyy
...
...
yyy yyy ... 514 ... yyy
yyy yyy ... 515 ... yyy
...
...
yyy yyy ... 1500 ... yyy
Expected output (don't merge rows for values of LOGRECNO that don't exist in sample_state_census.csv)
Varname 1 Varname 2 ... Varname 10 (LOGRECNO) GeoVarname 1 GeoVarname 2 ... GeoVarname 65 Varname 11... Varname 16000
xxx xxx ... 1 yyy yyy ... yyy xxx ... xxx
xxx xxx ... 2 yyy yyy ... yyy xxx ... xxx
...
...
xxx xxx ... 514 yyy yyy ... yyy xxx ... xxx
xxx xxx ... 1312 yyy yyy ... yyy xxx ... xxx
...
...
xxx xxx ... 1500 yyy yyy ... yyy xxx ... xxx