I'm trying to do a simple binary classification problem using Keras and its pre-built ImageNet CNN architecture.
For VGG16, I took the following approach,
vgg16_model = keras.application.vgg16.VGG16()
'''Rebuild the vgg16 using an empty sequential model'''
model = Sequential()
for layer in vgg16_model.layers:
model.add(layer)
'''Since the problem is binary, I got rid of the output layer and added a more appropriate output layer.'''
model.pop()
'''Freeze other pre-trained weights'''
for layer in model.layers:
layer.trainable = False
'''Add the modified final layer'''
model.add(Dense(2, activation = 'softmax'))
And this worked marvelously with higher accuracy than my custom built CNN. But it took a while to train and I wanted to take a similar approach using Xception and InceptionV3 since they were lighter models with higher accuracy.
xception_model = keras.applicaitons.xception.Xception()
model = Sequential()
for layer in xception_model.layers:
model_xception.add(layer)
When I run the above code, I get the following error:
ValueError: Input 0 is incompatible with layer conv2d_193: expected axis -1 of input shape to have value 64 but got shape (None, None, None, 128)
Basically, I would like to do the same thing as I did with VGG16 model; keep the other pretrained weights as they are and simply modify the output layer to a binary classification output instead of an output layer with 1000 outcomes. I can see that unlike VGG16, which has relatively straightforward convolution layer structure, Xception and InceptionV3 have some funky nodes that I'm not 100% familiar with and I'm assuming those are causing issues. If anyone can help out sort the problem, it'd be much appreciated!
Thanks!