可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
Alright, I think we all agree that what happens with the following code is undefined, depending on what is passed,
void deleteForMe(int* pointer)
{
delete[] pointer;
}
The pointer could be all sorts of different things, and so performing an unconditional delete[]
on it is undefined. However, let's assume that we are indeed passing an array pointer,
int main()
{
int* arr = new int[5];
deleteForMe(arr);
return 0;
}
My question is, in this case where the pointer is an array, who is it that knows this? I mean, from the language/compiler's point of view, it has no idea whether or not arr
is an array pointer versus a pointer to a single int. Heck, it doesn't even know whether arr
was dynamically created. Yet, if I do the following instead,
int main()
{
int* num = new int(1);
deleteForMe(num);
return 0;
}
The OS is smart enough to only delete one int and not go on some type of 'killing spree' by deleting the rest of the memory beyond that point (contrast that with strlen
and a non-\0
-terminated string -- it will keep going until it hits 0).
So whose job is it to remember these things? Does the OS keep some type of record in the background? (I mean, I realise that I started this post by saying that what happens is undefined, but the fact is, the 'killing spree' scenario doesn't happen, so therefore in the practical world someone is remembering.)
回答1:
The compiler doesn't know it's an array, it's trusting the programmer. Deleting a pointer to a single int
with delete []
would result in undefined behavior. Your second main()
example is unsafe, even if it doesn't immediately crash.
The compiler does have to keep track of how many objects need to be deleted somehow. It may do this by over-allocating enough to store the array size. For more details, see the C++ Super FAQ.
回答2:
One question that the answers given so far don't seem to address: if the runtime libraries (not the OS, really) can keep track of the number of things in the array, then why do we need the delete[]
syntax at all? Why can't a single delete
form be used to handle all deletes?
The answer to this goes back to C++'s roots as a C-compatible language (which it no longer really strives to be.) Stroustrup's philosophy was that the programmer should not have to pay for any features that they aren't using. If they're not using arrays, then they should not have to carry the cost of object arrays for every allocated chunk of memory.
That is, if your code simply does
Foo* foo = new Foo;
then the memory space that's allocated for foo
shouldn't include any extra overhead that would be needed to support arrays of Foo
.
Since only array allocations are set up to carry the extra array size information, you then need to tell the runtime libraries to look for that information when you delete the objects. That's why we need to use
delete[] bar;
instead of just
delete bar;
if bar is a pointer to an array.
For most of us (myself included), that fussiness about a few extra bytes of memory seems quaint these days. But there are still some situations where saving a few bytes (from what could be a very high number of memory blocks) can be important.
回答3:
Yes, the OS keeps some things in the 'background.' For example, if you run
int* num = new int[5];
the OS can allocate 4 extra bytes, store the size of the allocation in the first 4 bytes of the allocated memory and return an offset pointer (ie, it allocates memory spaces 1000 to 1024 but the pointer returned points to 1004, with locations 1000-1003 storing the size of the allocation). Then, when delete is called, it can look at 4 bytes before the pointer passed to it to find the size of the allocation.
I am sure that there are other ways of tracking the size of an allocation, but that's one option.
回答4:
This is very similar to this question and it has many of the details your are looking for.
But suffice to say, it is not the job of the OS to track any of this. It's actually the runtime libraries or the underlying memory manager that will track the size of the array. This is usually done by allocating extra memory up front and storing the size of the array in that location (most use a head node).
This is viewable on some implementations by executing the following code
int* pArray = new int[5];
int size = *(pArray-1);
回答5:
delete
or delete[]
would probably both free the memory allocated (memory pointed), but the big difference is that delete
on an array won't call the destructor of each element of the array.
Anyway, mixing new/new[]
and delete/delete[]
is probably UB.
回答6:
It doesn't know it's an array, that's why you have to supply delete[]
instead of regular old delete
.
回答7:
I had a similar question to this. In C, you allocate memory with malloc() (or another similar function), and delete it with free(). There is only one malloc(), which simply allocates a certain number of bytes. There is only one free(), which simply takes a pointer as it's parameter.
So why is it that in C you can just hand over the pointer to free, but in C++ you must tell it whether it's an array or a single variable?
The answer, I've learned, has to do with class destructors.
If you allocate an instance of a class MyClass...
classes = new MyClass[3];
And delete it with delete, you may only get the destructor for the first instance of MyClass called. If you use delete[], you can be assured that the destructor will be called for all instances in the array.
THIS is the important difference. If you're simply working with standard types (e.g. int) you won't really see this issue. Plus, you should remember that behavior for using delete on new[] and delete[] on new is undefined--it may not work the same way on every compiler/system.
回答8:
It's up to the runtime which is responsible for the memory allocation, in the same way that you can delete an array created with malloc in standard C using free. I think each compiler implements it differently. One common way is to allocate an extra cell for the array size.
However, the runtime is not smart enough to detect whether or not it is an array or a pointer, you have to inform it, and if you are mistaken, you either don't delete correctly (E.g., ptr instead of array), or you end up taking an unrelated value for the size and cause significant damage.
回答9:
ONE OF THE approaches for compilers is to allocate a little more memory and store count of elements in the head element.
Example how it could be done:
Here
int* i = new int[4];
compiler will allocate sizeof(int)*5 bytes.
int *temp = malloc(sizeof(int)*5)
Will store 4
in first sizeof(int)
bytes
*temp = 4;
and set i
i = temp + 1;
So i
points to array of 4 elements, not 5.
And
delete[] i;
will be processed following way
int *temp = i - 1;
int numbers_of_element = *temp; // = 4
... call destructor for numbers_of_element elements if needed
... that are stored in temp + 1, temp + 2, ... temp + 4
free (temp)
回答10:
Agree that the compiler doesn't know if it is an array or not. It is up to the programmer.
The compiler sometimes keep track of how many objects need to be deleted by over-allocating enough to store the array size, but not always necessary.
For a complete specification when extra storage is allocated, please refer to C++ ABI (how compilers are implemented): Itanium C++ ABI: Array Operator new Cookies
回答11:
Semantically, both versions of delete operator in C++ can "eat" any pointer; however, if a pointer to a single object is given to delete[]
, then UB will result, meaning anything may happen, including a system crash or nothing at all.
C++ requires the programmer to choose the proper version of the delete operator depending on the subject of deallocation: array or single object.
If the compiler could automatically determine whether a pointer passed to the delete operator was a pointer array, then there would be only one delete operator in C++, which would suffice for both cases.
回答12:
You cannot use delete for an array, and you cannot use delete [] for a non-array.
回答13:
Hey ho well it depends of what you allocating with new[] expression when you allocate array of build in types or class / structure and you don't provide your constructor and destructor the operator will treat it as a size "sizeof(object)*numObjects" rather than object array therefore in this case number of allocated objects will not be stored anywhere, however if you allocate object array and you provide constructor and destructor in your object than behavior change, new expression will allocate 4 bytes more and store number of objects in first 4 bytes so the destructor for each one of them can be called and therefore new[] expression will return pointer shifted by 4 bytes forward, than when the memory is returned the delete[] expression will call a function template first, iterate through array of objects and call destructor for each one of them. I've created this simple code witch overloads new[] and delete[] expressions and provides a template function to deallocate memory and call destructor for each object if needed:
// overloaded new expression
void* operator new[]( size_t size )
{
// allocate 4 bytes more see comment below
int* ptr = (int*)malloc( size + 4 );
// set value stored at address to 0
// and shift pointer by 4 bytes to avoid situation that
// might arise where two memory blocks
// are adjacent and non-zero
*ptr = 0;
++ptr;
return ptr;
}
//////////////////////////////////////////
// overloaded delete expression
void static operator delete[]( void* ptr )
{
// decrement value of pointer to get the
// "Real Pointer Value"
int* realPtr = (int*)ptr;
--realPtr;
free( realPtr );
}
//////////////////////////////////////////
// Template used to call destructor if needed
// and call appropriate delete
template<class T>
void Deallocate( T* ptr )
{
int* instanceCount = (int*)ptr;
--instanceCount;
if(*instanceCount > 0) // if larger than 0 array is being deleted
{
// call destructor for each object
for(int i = 0; i < *instanceCount; i++)
{
ptr[i].~T();
}
// call delete passing instance count witch points
// to begin of array memory
::operator delete[]( instanceCount );
}
else
{
// single instance deleted call destructor
// and delete passing ptr
ptr->~T();
::operator delete[]( ptr );
}
}
// Replace calls to new and delete
#define MyNew ::new
#define MyDelete(ptr) Deallocate(ptr)
// structure with constructor/ destructor
struct StructureOne
{
StructureOne():
someInt(0)
{}
~StructureOne()
{
someInt = 0;
}
int someInt;
};
//////////////////////////////
// structure without constructor/ destructor
struct StructureTwo
{
int someInt;
};
//////////////////////////////
void main(void)
{
const unsigned int numElements = 30;
StructureOne* structOne = nullptr;
StructureTwo* structTwo = nullptr;
int* basicType = nullptr;
size_t ArraySize = 0;
/**********************************************************************/
// basic type array
// place break point here and in new expression
// check size and compare it with size passed
// in to new expression size will be the same
ArraySize = sizeof( int ) * numElements;
// this will be treated as size rather than object array as there is no
// constructor and destructor. value assigned to basicType pointer
// will be the same as value of "++ptr" in new expression
basicType = MyNew int[numElements];
// Place break point in template function to see the behavior
// destructors will not be called and it will be treated as
// single instance of size equal to "sizeof( int ) * numElements"
MyDelete( basicType );
/**********************************************************************/
// structure without constructor and destructor array
// behavior will be the same as with basic type
// place break point here and in new expression
// check size and compare it with size passed
// in to new expression size will be the same
ArraySize = sizeof( StructureTwo ) * numElements;
// this will be treated as size rather than object array as there is no
// constructor and destructor value assigned to structTwo pointer
// will be the same as value of "++ptr" in new expression
structTwo = MyNew StructureTwo[numElements];
// Place break point in template function to see the behavior
// destructors will not be called and it will be treated as
// single instance of size equal to "sizeof( StructureTwo ) * numElements"
MyDelete( structTwo );
/**********************************************************************/
// structure with constructor and destructor array
// place break point check size and compare it with size passed in
// new expression size in expression will be larger by 4 bytes
ArraySize = sizeof( StructureOne ) * numElements;
// value assigned to "structOne pointer" will be different
// of "++ptr" in new expression "shifted by another 4 bytes"
structOne = MyNew StructureOne[numElements];
// Place break point in template function to see the behavior
// destructors will be called for each array object
MyDelete( structOne );
}
///////////////////////////////////////////
回答14:
just define a destructor inside a class and execute your code with both syntax
delete pointer
delete [] pointer
according to the output u can find the solutions
回答15:
The answer:
int* pArray = new int[5];
int size = *(pArray-1);
Posted above is not correct and produces invalid value.
The "-1"counts elements
On 64 bit Windows OS the correct buffer size resides in Ptr - 4 bytes address