I have a dataframe like below:
dates 0
numbers letters
0 a 2013-01-01 0.261092
2013-01-02 -1.267770
2013-01-03 0.008230
b 2013-01-01 -1.515866
2013-01-02 0.351942
2013-01-03 -0.245463
c 2013-01-01 -0.253103
2013-01-02 -0.385411
2013-01-03 -1.740821
1 a 2013-01-01 -0.108325
2013-01-02 -0.212350
2013-01-03 0.021097
b 2013-01-01 -1.922214
2013-01-02 -1.769003
2013-01-03 -0.594216
c 2013-01-01 -0.419775
2013-01-02 1.511700
2013-01-03 0.994332
2 a 2013-01-01 -0.020299
2013-01-02 -0.749474
2013-01-03 -1.478558
b 2013-01-01 -1.357671
2013-01-02 0.161185
2013-01-03 -0.658246
c 2013-01-01 -0.564796
2013-01-02 -0.333106
2013-01-03 -2.814611
Now I was given a list like:
numbers letters
0 0 b
1 1 c
I need to select data whose indexs satisfy the list. The answer is like:
dates 0
numbers letters
0 b 2013-01-01 -1.515866
2013-01-02 0.351942
2013-01-03 -0.245463
1 c 2013-01-01 -0.419775
2013-01-02 1.511700
2013-01-03 0.994332
How can I select the specific data from the Dataframe of MultiIndex?
You can also use index intersection:
In [39]: l
Out[39]:
numbers letters
0 0 b
1 1 c
In [40]: df.loc[df.index.intersection(l.set_index(['numbers','letters']).index)]
Out[40]:
dates 0
numbers letters
0 b 2013-01-01 -1.515866
b 2013-01-02 0.351942
b 2013-01-03 -0.245463
1 c 2013-01-01 -0.108325
c 2013-01-02 -0.212350
c 2013-01-03 0.021097
c 2013-01-01 -0.419775
c 2013-01-02 1.511700
c 2013-01-03 0.994332
Or more straightforward and faster solution from @Javier:
In [155]: df.loc[l.set_index(['numbers','letters']).index]
Out[155]:
dates 0
numbers letters
0 b 2013-01-01 -1.515866
b 2013-01-02 0.351942
b 2013-01-03 -0.245463
1 c 2013-01-01 -0.108325
c 2013-01-02 -0.212350
c 2013-01-03 0.021097
c 2013-01-01 -0.419775
c 2013-01-02 1.511700
c 2013-01-03 0.994332
Timing:
for 27.000 rows Multi-Index DF
In [156]: df = pd.concat([df.reset_index()] * 10**3, ignore_index=True).set_index(['numbers','letters'])
In [157]: df.shape
Out[157]: (27000, 2)
In [158]: %%timeit
...: q = l.apply(lambda r: "(numbers == {} and letters == '{}')".format(r.numbers, r.letters),
...: axis=1) \
...: .str.cat(sep=' or ')
...: df.query(q)
...:
10 loops, best of 3: 21.3 ms per loop
In [159]: %%timeit
...: df.loc[l.set_index(['numbers','letters']).index]
...:
10 loops, best of 3: 20.2 ms per loop
In [160]: %%timeit
...: df.loc[df.index.intersection(l.set_index(['numbers','letters']).index)]
...:
10 loops, best of 3: 27.2 ms per loop
for 270.000 rows Multi-Index DF
In [163]: %%timeit
...: q = l.apply(lambda r: "(numbers == {} and letters == '{}')".format(r.numbers, r.letters),
...: axis=1) \
...: .str.cat(sep=' or ')
...: df.query(q)
...:
10 loops, best of 3: 117 ms per loop
In [164]: %%timeit
...: df.loc[l.set_index(['numbers','letters']).index]
...:
1 loop, best of 3: 142 ms per loop
In [165]: %%timeit
...: df.loc[df.index.intersection(l.set_index(['numbers','letters']).index)]
...:
10 loops, best of 3: 185 ms per loop
Conclusion: df.query()
method which uses numexpr
module internaly seems to be faster for bigger DFs
assuming you have the following DF with the values that you want to get:
In [28]: l
Out[28]:
numbers letters
0 0 b
1 1 c
if you need to select all rows where numbers
is either 0
or 1
and letters
is in ['b','c']
you can use df.query()
method as follows:
In [29]: df.query("numbers in @l.numbers and letters in @l.letters")
Out[29]:
dates 0
numbers letters
0 b 2013-01-01 -1.515866
b 2013-01-02 0.351942
b 2013-01-03 -0.245463
c 2013-01-01 -0.253103
c 2013-01-02 -0.385411
c 2013-01-03 -1.740821
1 c 2013-01-01 -0.108325
c 2013-01-02 -0.212350
c 2013-01-03 0.021097
b 2013-01-01 -1.922214
b 2013-01-02 -1.769003
b 2013-01-03 -0.594216
c 2013-01-01 -0.419775
c 2013-01-02 1.511700
c 2013-01-03 0.994332
or simply:
df.query("numbers in [0,1] and letters in ['b','c']")
UPDATE: if it must be exact matches, like (0, 'b')
and (1, 'c')
:
In [14]: q = l.apply(lambda r: "(numbers == {} and letters == '{}')".format(r.numbers, r.letters),
...: axis=1) \
...: .str.cat(sep=' or ')
...:
In [15]: q
Out[15]: "(numbers == 0 and letters == 'b') or (numbers == 1 and letters == 'c')"
In [16]: df.query(q)
Out[16]:
dates 0
numbers letters
0 b 2013-01-01 -1.515866
b 2013-01-02 0.351942
b 2013-01-03 -0.245463
1 c 2013-01-01 -0.108325
c 2013-01-02 -0.212350
c 2013-01-03 0.021097
c 2013-01-01 -0.419775
c 2013-01-02 1.511700
c 2013-01-03 0.994332