Apache Flink: Performance issue when running many

2019-07-28 16:32发布

问题:

With a high number of Flink SQL queries (100 of below), the Flink command line client fails with a "JobManager did not respond within 600000 ms" on a Yarn cluster, i.e. the job is never started on the cluster.

  • JobManager logs has nothing after the last TaskManager started except DEBUG logs with "job with ID 5cd95f89ed7a66ec44f2d19eca0592f7 not found in JobManager", indicating its likely stuck (creating the ExecutionGraph?).
  • The same works as standalone java program locally (high CPU initially)
  • Note: Each Row in structStream contains 515 columns (many end up null) including a column that has the raw message.
  • In the YARN cluster we specify 18GB for TaskManager, 18GB for the JobManager, 5 slots each and parallelism of 725 (partitions in our Kafka source).

Flink SQL Query:

select count (*), 'idnumber' as criteria, Environment, CollectedTimestamp, 
       EventTimestamp, RawMsg, Source 
from structStream
where Environment='MyEnvironment' and Rule='MyRule' and LogType='MyLogType' 
      and Outcome='Success'
group by tumble(proctime, INTERVAL '1' SECOND), Environment, 
         CollectedTimestamp, EventTimestamp, RawMsg, Source

Code

public static void main(String[] args) throws Exception {
    FileSystems.newFileSystem(KafkaReadingStreamingJob.class
                             .getResource(WHITELIST_CSV).toURI(), new HashMap<>());

    final StreamExecutionEnvironment streamingEnvironment = getStreamExecutionEnvironment();
    final StreamTableEnvironment tableEnv = TableEnvironment.getTableEnvironment(streamingEnvironment);

    final DataStream<Row> structStream = getKafkaStreamOfRows(streamingEnvironment);
    tableEnv.registerDataStream("structStream", structStream);
    tableEnv.scan("structStream").printSchema();

    for (int i = 0; i < 100; i++) {
        for (String query : Queries.sample) {
            // Queries.sample has one query that is above. 
            Table selectQuery = tableEnv.sqlQuery(query);

            DataStream<Row> selectQueryStream =                                                 
                               tableEnv.toAppendStream(selectQuery, Row.class);
            selectQueryStream.print();
        }
    }

    // execute program
    streamingEnvironment.execute("Kafka Streaming SQL");
}

private static DataStream<Row> getKafkaStreamOfRows(StreamExecutionEnvironment environment) throws Exception {
    Properties properties = getKafkaProperties();

    // TestDeserializer deserializes the JSON to a ROW of string columns (515)
    // and also adds a column for the raw message. 
    FlinkKafkaConsumer011 consumer = new         
         FlinkKafkaConsumer011(KAFKA_TOPIC_TO_CONSUME, new TestDeserializer(getRowTypeInfo()), properties);
    DataStream<Row> stream = environment.addSource(consumer);

    return stream;
}

private static RowTypeInfo getRowTypeInfo() throws Exception {
    // This has 515 fields. 
    List<String> fieldNames = DDIManager.getDDIFieldNames();
    fieldNames.add("rawkafka"); // rawMessage added by TestDeserializer
    fieldNames.add("proctime");

    // Fill typeInformationArray with StringType to all but the last field which is of type Time
    .....
    return new RowTypeInfo(typeInformationArray, fieldNamesArray);
}

private static StreamExecutionEnvironment getStreamExecutionEnvironment() throws IOException {
    final StreamExecutionEnvironment env =                      
    StreamExecutionEnvironment.getExecutionEnvironment(); 
    env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);

    env.enableCheckpointing(60000);
    env.setStateBackend(new FsStateBackend(CHECKPOINT_DIR));
    env.setParallelism(725);
    return env;
}

private static DataStream<Row> getKafkaStreamOfRows(StreamExecutionEnvironment environment) throws Exception {
    Properties properties = getKafkaProperties();

    // TestDeserializer deserializes the JSON to a ROW of string columns (515)
    // and also adds a column for the raw message. 
    FlinkKafkaConsumer011 consumer = new FlinkKafkaConsumer011(KAFKA_TOPIC_TO_CONSUME, new  TestDeserializer(getRowTypeInfo()), properties);
    DataStream<Row> stream = environment.addSource(consumer);

    return stream;
}

private static RowTypeInfo getRowTypeInfo() throws Exception {
    // This has 515 fields. 
    List<String> fieldNames = DDIManager.getDDIFieldNames();
    fieldNames.add("rawkafka"); // rawMessage added by TestDeserializer
    fieldNames.add("proctime");

    // Fill typeInformationArray with StringType to all but the last field which is of type Time
    .....
    return new RowTypeInfo(typeInformationArray, fieldNamesArray);
}

private static StreamExecutionEnvironment getStreamExecutionEnvironment() throws IOException {
    final StreamExecutionEnvironment env =     StreamExecutionEnvironment.getExecutionEnvironment(); 
    env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);

    env.enableCheckpointing(60000);
    env.setStateBackend(new FsStateBackend(CHECKPOINT_DIR));
    env.setParallelism(725);
    return env;
}

回答1:

This looks to me as if the JobManager is overloaded with too many concurrently running jobs. I'd suggest to distribute the jobs to more JobManagers / Flink clusters.