I'd like to calculate the mathematical logarithm "by hand"...
... where stands for the logarithmBase and stands for the value.
Some examples (See Log calculator):
The base 2 logarithm of 10 is 3.3219280949
The base 5 logarithm of 15 is 1.6826061945
...
Hoever - I do not want to use a already implemented function call like Math.ceil, Math.log, Math.abs, ...
, because I want a clean native solution that just deals with +-*/
and some loops.
This is the code I got so far:
function myLog(base, x) {
let result = 0;
do {
x /= base;
result ++;
} while (x >= base)
return result;
}
let x = 10,
base = 2;
let result = myLog(base, x)
console.log(result)
But it doesn't seems like the above method is the right way to calculate the logarithm to base N - so any help how to fix this code would be really appreciated.
Thanks a million in advance jonas.
You could use a recursive approach:
const log = (base, n, depth = 20, curr = 64, precision = curr / 2) =>
depth <= 0 || base ** curr === n
? curr
: log(base, n, depth - 1, base ** curr > n ? curr - precision : curr + precision, precision / 2);
Usable as:
log(2, 4) // 2
log(2, 10) // 3.32196044921875
You can influence the precision by changing depth
, and you can change the range of accepted values (currently ~180) with curr
How it works:
If we already reached the wanted depth or if we already found an accurate value:
depth <= 0 || base ** curr === n
Then it just returns curr
and is done. Otherwise it checks if the logarithm we want to find is lower or higher than the current one:
base ** curr > n
It will then continue searching for a value recursively by
1) lowering depth
by one
2) increasing / decreasing curr
by the current precision
3) lower precision
If you hate functional programming, here is an imperative version:
function log(base, n, depth = 20) {
let curr = 64, precision = curr / 2;
while(depth-- > 0 && base ** curr !== n) {
if(base ** curr > n) {
curr -= precision;
} else {
curr += precision;
}
precision /= 2;
}
return curr;
}
By the way, the algorithm i used is called "logarithmic search" commonly known as "binary search".
First method: with a table of constants.
First normalize the argument to a number between 1 and 2 (this is achieved by multiplying or dividing by 2 as many times as necessary - keep a count of these operations). For efficiency, if the values can span many orders of magnitude, instead of equal factors you can use a squared sequence, 2, 4, 16, 256..., followed by a dichotomic search when you have bracketed the value.
F.i. if the exponents 16=2^4 works but not 256=2^8, you try 2^6, then one of 2^5 and 2^7 depending on outcome. If the final exponent is 2^d, the linear search takes O(d) operations and the geometric/dichotomic search only O(log d). To avoid divisions, it is advisable to keep a table of negative powers.
After normalization, you need to refine the mantissa. Compare the value to √2, and if larger multiply by 1/√2. This brings the value between 1 and √2. Then compare to √√2 and so on. As you go, you add the weights 1/2, 1/4, ... to the exponent when a comparison returns greater.
In the end, the exponent is the base 2 logarithm.
Example: lg 27
27 = 2^4 x 1.6875
1.6875 > √2 = 1.4142 ==> 27 = 2^4.5 x 1.1933
1.1933 > √√2 = 1.1892 ==> 27 = 2^4.75 x 1.0034
1.0034 < √√√2 = 1.0905 ==> 27 = 2^4.75 x 1.0034
...
The true value is 4.7549.
Note that you can work with other bases, in particular e. In some contexts, base 2 allows shortcuts, this is why I used it. Of course, the square roots should be tabulated.
Second method: with a Taylor series.
After the normalization step, you can use the standard series
log(1 + x) = x - x²/2 + x³/3 - ...
which converges for |x| < 1
. (Caution: we now have natural logarithms.)
As convergence is too slow for values close to 1, it is advisable to use the above method to reduce to the range [1, √2). Then every new term brings a new bit of accuracy.
Alternatively, you can use the series for log((1 + x)/(1 - x)), which gives a good convergence speed even for the argument 2. See https://fr.wikipedia.org/wiki/Logarithme_naturel#D%C3%A9veloppement_en_s%C3%A9rie
Example: with x = 1.6875, y = 0.2558 and
2 x (0.2558 + 0.2558³/3 + 0.2558^5/5) = 0.5232
lg 27 ~ 4 + 0.5232 / ln 2 = 4.7548