How to find the shortest path between two vertices

2019-07-28 00:21发布

问题:

So I'm currently working on a project of a word ladder problem and I have already built the graph for storing all dictionary words in it and added the edges in it, I did this using boost graph library.

But what is confusing me is that breadth_first_search() function, seems like the parameters only take the starting vertex but no ending vertex.

I checked the documentations and noticed that I can define the BFS visitor for that search function, but since I'm a newbie to the boost library I could not figure out how it works.

Can anybody explain how to implement finding the shortest path between two vertices? I'm using an undirected and unweighted graph.

#include <iostream> // std::cout
#include <fstream>
#include <string>
#include <stdlib.h>
#include <utility> // std::pair
#include "headers.h"
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <boost/graph/graph_utility.hpp>

using namespace std;

//Define a class that has the data you want to associate to every vertex and 
edge
//struct Vertex{ int foo;}
//  struct Edge{std::string blah;}

struct VertexProperties {
  string name;
  VertexProperties(string name) : name(name) {}
};

//typedef property<edge_weight_t, int> EdgeWeightProperty;
//typedef property<vertex_name_t, string> VertexNameProperty;

//Define the graph using those classes
typedef boost::adjacency_list<boost::setS, boost::listS, boost::undirectedS, 
VertexProperties> Graph;
typedef Graph::vertex_iterator Vit;
typedef Graph::vertex_descriptor Vde;
typedef Graph::edge_descriptor E;
typedef boost::graph_traits<Graph>::adjacency_iterator adjacency_it;


struct my_visitor : boost::default_dijkstra_visitor {
 using base = boost::default_dijkstra_visitor;
 struct done{};

my_visitor(Vde vd, size_t& visited) : destination(vd), visited(visited) {}

void finish_vertex(Vde v, Graph const& g) {
++visited;

if (v == destination)
  throw done{};

base::finish_vertex(v, g);
}

private:
Vde destination;
size_t &visited;
};

//Some typedefs for simplicity
//typedef boost::graph_traits<Graph>::vertex_descriptor vertex_t;
//typedef boost::graph_traits<Graph>::edge_descriptor edge_t;
int main()
{
ifstream dictionary("dictionary.txt");
string word;
Graph allWords;
//Vit begin,end;

if(dictionary.is_open())
{
  while(getline(dictionary,word))
    {
  word.pop_back();
      add_vertex(VertexProperties(word),allWords);
    }
 }
else 
cout<<"File openning failed."<<endl;

dictionary.close();
//cout<<num_vertices(allWords)<<endl;
Vit begin,end;
boost::tie(begin, end) = vertices(allWords);

vector<Graph::vertex_descriptor> vindex(begin, end);

int first=0;
int second=0;
for(Vit it=begin;it!=end;it++)
{
  for(Vit that=it;that!=end;that++)
    {
      if(isEditDistanceOne(allWords[*it].name,allWords[*that].name))
        add_edge(vindex[first],vindex[second],allWords);
      second++;
    }
  first++;
  second=first;
  cout<<first<<endl;
 }
//Vit temp=begin;
//temp++;   
//cout<<allWords[*begin].name<<"////////////////"<<endl;
adjacency_it neighbour, neighbour_end;
for (tie(neighbour, neighbour_end) = adjacent_vertices(*begin, allWords); 
    neighbour != neighbour_end; ++neighbour)
cout<<allWords[*neighbour].name<<endl;



string firstWord;
string secondWord;

int firstIndex=-1;
int secondIndex=-1;

cout<<"Enter first word:"<<endl;
cin>>firstWord;

cout<<"Enter second word:"<<endl;
cin>>secondWord;


Vit a=begin;
for(int i=0;i<num_vertices(allWords);i++)
{
  if(allWords[*a].name==firstWord)
    {
      firstIndex=i;
      break;
    }
  a++;
}

Vit b=begin;
for(int i=0;i<num_vertices(allWords);i++)
{
  if(allWords[*b].name==secondWord)
    {
      secondIndex=i;
      break;
    }
  b++;
}

if(firstIndex==-1)
  cout<<"First word not in graph."<<endl;

else if(secondIndex==-1)
  cout<<"Second word not in graph."<<endl;

else
{
  Vde start_vertex=vindex[firstIndex];
  Vde end_vertex=vindex[secondIndex];

  size_t visited;
  std::vector<boost::default_color_type> colors(num_vertices(allWords), 
  boost::default_color_type{});
  std::vector<Vde>                         _pred(num_vertices(allWords),   
  allWords.null_vertex());
  std::vector<size_t>                    _dist(num_vertices(allWords),   
  -1ull);

  my_visitor vis { end_vertex, visited };
  auto predmap = _pred.data(); // interior properties: 
  boost::get(boost::vertex_predecessor, g);
  auto distmap = _dist.data(); // interior properties: 
  boost::get(boost::vertex_distance, g);

  try {
  std::cout << "Searching from #" << start_vertex << " to #" << end_vertex 
  << 
  "...\n";
  boost::dijkstra_shortest_paths(allWords, start_vertex, 
                   boost::visitor(vis).
                   color_map(colors.data()).
                   distance_map(distmap).
                   predecessor_map(predmap).
                   weight_map(boost::make_constant_property<E>(1ul))
                   );

  std::cout << "No path found\n";
    return 0;
  } catch(my_visitor::done const&) {
  std::cout << "Percentage skipped: " << 
 (100.0*visited/num_vertices(allWords)) << "%\n";
  } 
 }


 //cout<<adjacency_list[*begin]<<"\t";
 return 0;
 }

回答1:

Just abort the search when you discover your target.

Here's a working sample

Live On Coliru

#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/graph_utility.hpp>
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <boost/graph/random.hpp>
#include <random>
#include <iostream>

using G = boost::adjacency_list<boost::vecS, boost::vecS, boost::undirectedS>;
using V = G::vertex_descriptor;
using E = G::edge_descriptor;

struct my_visitor : boost::default_dijkstra_visitor {
    using base = boost::default_dijkstra_visitor;
    struct done{};

    my_visitor(V vd, size_t& visited) : destination(vd), visited(visited) {}

    void finish_vertex(V v, G const& g) {
        ++visited;

        if (v == destination)
            throw done{};

        base::finish_vertex(v, g);
    }

  private:
    V destination;
    size_t &visited;
};

int main() {
#if 1
    auto seed = 2912287549; // fixed seed for demo
#else
    auto seed = std::random_device{}();
    std::cout << "SEED: " << seed << "\n";
#endif
    std::mt19937 prng { seed };
    G g;
    generate_random_graph(g, 100, 400, prng);
    print_graph(g);

    V start_vertex = prng()%num_vertices(g);
    V end_vertex   = prng()%num_vertices(g);

    size_t visited;
    std::vector<boost::default_color_type> colors(num_vertices(g), boost::default_color_type{});
    std::vector<V>                         _pred(num_vertices(g),   g.null_vertex());
    std::vector<size_t>                    _dist(num_vertices(g),   -1ull);

    my_visitor vis { end_vertex, visited };
    auto predmap = _pred.data(); // interior properties: boost::get(boost::vertex_predecessor, g);
    auto distmap = _dist.data(); // interior properties: boost::get(boost::vertex_distance, g);

    try {
        std::cout << "Searching from #" << start_vertex << " to #" << end_vertex << "...\n";
        boost::dijkstra_shortest_paths(g, start_vertex, 
                boost::visitor(vis).
                color_map(colors.data()).
                distance_map(distmap).
                predecessor_map(predmap).
                weight_map(boost::make_constant_property<E>(1ul))
            );

        std::cout << "No path found\n";
        return 0;
    } catch(my_visitor::done const&) {
        std::cout << "Percentage skipped: " << (100.0*visited/num_vertices(g)) << "%\n";
    }

    size_t distance = distmap[end_vertex];
    std::cout << "Distance from #" << start_vertex << " to #" << end_vertex << ": " << distance << "\n";

    if (distance != size_t(-1)) {
        std::deque<V> path;
        for (V current = end_vertex; 
                current != g.null_vertex() 
                && predmap[current] != current 
                && current != start_vertex;) 
        {
            path.push_front(predmap[current]);
            current = predmap[current];
        }

        std::cout << "Path from #" << start_vertex << " to #" << end_vertex << ": ";
        std::copy(path.begin(), path.end(), std::ostream_iterator<V>(std::cout, ", "));
        std::cout << end_vertex << "\n";
    }
}

It generates random undirected graphs with 100 vertices and 400 edges. For the specific demo seed it prints the following output:

0 <--> 45 46 15 83 69 32 38 68 37 
1 <--> 29 52 99 85 10 19 30 78 
2 <--> 42 7 35 80 25 9 23 23 
3 <--> 29 9 15 77 7 58 42 
4 <--> 75 56 98 24 14 40 97 34 84 37 80 30 62 
5 <--> 58 46 80 71 
6 <--> 89 12 47 88 80 
7 <--> 62 69 2 86 88 74 8 33 13 76 3 9 86 48 
8 <--> 64 26 31 7 94 95 77 
9 <--> 83 53 76 3 43 55 7 2 67 72 
10 <--> 51 16 21 20 1 63 31 
11 <--> 38 50 19 88 16 52 
12 <--> 46 6 85 21 61 39 
13 <--> 95 24 17 51 7 
14 <--> 24 4 43 53 
15 <--> 0 51 70 3 43 34 
16 <--> 72 10 23 99 28 35 22 11 96 99 19 38 39 
17 <--> 84 25 13 54 74 96 28 
18 <--> 90 54 88 78 
19 <--> 63 11 61 20 73 22 1 63 90 75 16 
20 <--> 70 57 79 35 19 10 65 79 45 
21 <--> 49 89 43 50 10 38 12 26 67 
22 <--> 41 49 95 99 25 39 23 16 19 81 
23 <--> 35 16 22 95 2 69 2 
24 <--> 76 85 13 42 14 4 85 88 
25 <--> 98 17 22 72 92 60 2 51 
26 <--> 65 48 62 8 50 86 44 37 21 48 
27 <--> 42 82 
28 <--> 92 46 89 16 50 53 59 17 94 
29 <--> 1 33 3 46 91 96 46 48 
30 <--> 60 96 70 79 1 48 4 
31 <--> 37 66 50 8 59 72 32 87 10 67 
32 <--> 84 77 49 71 0 31 81 75 98 66 
33 <--> 29 83 66 7 69 74 80 79 
34 <--> 90 59 73 61 47 4 75 87 15 
35 <--> 51 23 46 20 16 2 68 
36 <--> 70 
37 <--> 31 41 77 68 70 26 70 4 0 60 
38 <--> 11 65 74 0 21 39 50 94 16 86 
39 <--> 48 88 38 22 12 89 16 
40 <--> 81 92 86 4 55 
41 <--> 22 37 74 64 63 63 79 
42 <--> 27 2 24 84 90 65 67 76 72 93 3 
43 <--> 51 75 21 54 9 65 14 53 44 15 
44 <--> 74 82 26 43 
45 <--> 0 86 70 46 94 89 20 
46 <--> 0 12 28 35 45 96 5 29 29 
47 <--> 96 51 6 82 62 34 88 78 
48 <--> 26 99 39 50 59 78 30 29 7 26 
49 <--> 21 22 52 32 99 61 55 69 66 57 
50 <--> 82 11 31 21 26 65 28 48 38 94 55 
51 <--> 43 35 10 47 15 55 13 55 88 25 69 84 
52 <--> 86 49 66 1 93 55 11 74 90 
53 <--> 89 76 9 76 82 28 77 43 14 
54 <--> 87 43 17 98 59 18 66 
55 <--> 68 76 51 65 51 81 52 9 49 92 50 40 
56 <--> 4 82 95 88 80 
57 <--> 20 87 66 62 49 
58 <--> 5 3 
59 <--> 34 75 71 28 31 48 54 70 96 
60 <--> 81 30 81 87 61 61 25 37 
61 <--> 78 62 97 19 49 34 12 60 60 
62 <--> 7 26 69 87 61 70 92 57 47 90 4 
63 <--> 19 41 41 10 72 19 
64 <--> 8 92 41 95 86 
65 <--> 26 38 50 42 55 43 83 79 20 79 
66 <--> 52 31 33 57 87 54 32 49 
67 <--> 97 42 98 9 31 21 
68 <--> 55 74 96 37 0 98 35 
69 <--> 7 97 62 0 97 33 70 49 75 51 23 
70 <--> 20 83 45 78 15 69 30 37 62 37 59 78 77 36 
71 <--> 83 74 59 32 5 88 
72 <--> 16 74 31 25 85 83 42 63 9 
73 <--> 74 34 87 19 
74 <--> 68 73 41 44 72 71 7 38 17 96 33 82 52 
75 <--> 4 43 59 86 32 34 19 69 85 
76 <--> 24 53 55 53 9 42 7 
77 <--> 32 37 79 53 3 70 96 90 8 
78 <--> 61 70 70 48 1 18 47 
79 <--> 20 77 41 30 98 65 20 33 65 82 
80 <--> 82 81 86 93 56 5 33 2 6 4 
81 <--> 40 60 60 80 91 55 32 22 
82 <--> 80 50 44 56 88 53 47 27 74 79 
83 <--> 9 70 71 0 33 95 72 65 
84 <--> 32 17 42 86 4 51 
85 <--> 24 96 12 87 24 1 72 89 87 75 
86 <--> 52 45 40 7 84 26 75 80 7 64 38 
87 <--> 54 57 73 85 62 60 66 31 85 34 
88 <--> 7 39 82 56 11 6 51 24 18 47 71 
89 <--> 53 21 6 28 99 92 45 85 39 
90 <--> 34 42 96 18 77 19 62 52 
91 <--> 81 29 
92 <--> 28 40 64 62 25 89 55 
93 <--> 52 80 42 
94 <--> 8 45 50 28 38 
95 <--> 22 13 83 56 23 64 8 
96 <--> 85 47 30 68 46 90 74 17 16 77 29 59 
97 <--> 69 67 61 69 4 
98 <--> 25 4 54 79 68 67 32 
99 <--> 22 48 16 89 1 49 16 
Searching from #20 to #27...
Percentage skipped: 91%
Distance from #20 to #27: 3
Path from #20 to #27: 20, 65, 42, 27

As you can see, 91% of nodes weren't visited.

Notes

The docs say to use breadth-first search when the edge weight is constant. I couldn't make that work sadly.

Assuming that algorithmic equivalence is asserted, the paths will still be shortest using the early-out (assuming that the edge weight is constant).