So I'm currently working on a project of a word ladder problem and I have already built the graph for storing all dictionary words in it and added the edges in it, I did this using boost graph library.
But what is confusing me is that breadth_first_search()
function, seems like the parameters only take the starting vertex but no ending vertex.
I checked the documentations and noticed that I can define the BFS visitor for that search function, but since I'm a newbie to the boost library I could not figure out how it works.
Can anybody explain how to implement finding the shortest path between two vertices? I'm using an undirected and unweighted graph.
#include <iostream> // std::cout
#include <fstream>
#include <string>
#include <stdlib.h>
#include <utility> // std::pair
#include "headers.h"
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <boost/graph/graph_utility.hpp>
using namespace std;
//Define a class that has the data you want to associate to every vertex and
edge
//struct Vertex{ int foo;}
// struct Edge{std::string blah;}
struct VertexProperties {
string name;
VertexProperties(string name) : name(name) {}
};
//typedef property<edge_weight_t, int> EdgeWeightProperty;
//typedef property<vertex_name_t, string> VertexNameProperty;
//Define the graph using those classes
typedef boost::adjacency_list<boost::setS, boost::listS, boost::undirectedS,
VertexProperties> Graph;
typedef Graph::vertex_iterator Vit;
typedef Graph::vertex_descriptor Vde;
typedef Graph::edge_descriptor E;
typedef boost::graph_traits<Graph>::adjacency_iterator adjacency_it;
struct my_visitor : boost::default_dijkstra_visitor {
using base = boost::default_dijkstra_visitor;
struct done{};
my_visitor(Vde vd, size_t& visited) : destination(vd), visited(visited) {}
void finish_vertex(Vde v, Graph const& g) {
++visited;
if (v == destination)
throw done{};
base::finish_vertex(v, g);
}
private:
Vde destination;
size_t &visited;
};
//Some typedefs for simplicity
//typedef boost::graph_traits<Graph>::vertex_descriptor vertex_t;
//typedef boost::graph_traits<Graph>::edge_descriptor edge_t;
int main()
{
ifstream dictionary("dictionary.txt");
string word;
Graph allWords;
//Vit begin,end;
if(dictionary.is_open())
{
while(getline(dictionary,word))
{
word.pop_back();
add_vertex(VertexProperties(word),allWords);
}
}
else
cout<<"File openning failed."<<endl;
dictionary.close();
//cout<<num_vertices(allWords)<<endl;
Vit begin,end;
boost::tie(begin, end) = vertices(allWords);
vector<Graph::vertex_descriptor> vindex(begin, end);
int first=0;
int second=0;
for(Vit it=begin;it!=end;it++)
{
for(Vit that=it;that!=end;that++)
{
if(isEditDistanceOne(allWords[*it].name,allWords[*that].name))
add_edge(vindex[first],vindex[second],allWords);
second++;
}
first++;
second=first;
cout<<first<<endl;
}
//Vit temp=begin;
//temp++;
//cout<<allWords[*begin].name<<"////////////////"<<endl;
adjacency_it neighbour, neighbour_end;
for (tie(neighbour, neighbour_end) = adjacent_vertices(*begin, allWords);
neighbour != neighbour_end; ++neighbour)
cout<<allWords[*neighbour].name<<endl;
string firstWord;
string secondWord;
int firstIndex=-1;
int secondIndex=-1;
cout<<"Enter first word:"<<endl;
cin>>firstWord;
cout<<"Enter second word:"<<endl;
cin>>secondWord;
Vit a=begin;
for(int i=0;i<num_vertices(allWords);i++)
{
if(allWords[*a].name==firstWord)
{
firstIndex=i;
break;
}
a++;
}
Vit b=begin;
for(int i=0;i<num_vertices(allWords);i++)
{
if(allWords[*b].name==secondWord)
{
secondIndex=i;
break;
}
b++;
}
if(firstIndex==-1)
cout<<"First word not in graph."<<endl;
else if(secondIndex==-1)
cout<<"Second word not in graph."<<endl;
else
{
Vde start_vertex=vindex[firstIndex];
Vde end_vertex=vindex[secondIndex];
size_t visited;
std::vector<boost::default_color_type> colors(num_vertices(allWords),
boost::default_color_type{});
std::vector<Vde> _pred(num_vertices(allWords),
allWords.null_vertex());
std::vector<size_t> _dist(num_vertices(allWords),
-1ull);
my_visitor vis { end_vertex, visited };
auto predmap = _pred.data(); // interior properties:
boost::get(boost::vertex_predecessor, g);
auto distmap = _dist.data(); // interior properties:
boost::get(boost::vertex_distance, g);
try {
std::cout << "Searching from #" << start_vertex << " to #" << end_vertex
<<
"...\n";
boost::dijkstra_shortest_paths(allWords, start_vertex,
boost::visitor(vis).
color_map(colors.data()).
distance_map(distmap).
predecessor_map(predmap).
weight_map(boost::make_constant_property<E>(1ul))
);
std::cout << "No path found\n";
return 0;
} catch(my_visitor::done const&) {
std::cout << "Percentage skipped: " <<
(100.0*visited/num_vertices(allWords)) << "%\n";
}
}
//cout<<adjacency_list[*begin]<<"\t";
return 0;
}
Just abort the search when you discover your target.
Here's a working sample
Live On Coliru
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/graph_utility.hpp>
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <boost/graph/random.hpp>
#include <random>
#include <iostream>
using G = boost::adjacency_list<boost::vecS, boost::vecS, boost::undirectedS>;
using V = G::vertex_descriptor;
using E = G::edge_descriptor;
struct my_visitor : boost::default_dijkstra_visitor {
using base = boost::default_dijkstra_visitor;
struct done{};
my_visitor(V vd, size_t& visited) : destination(vd), visited(visited) {}
void finish_vertex(V v, G const& g) {
++visited;
if (v == destination)
throw done{};
base::finish_vertex(v, g);
}
private:
V destination;
size_t &visited;
};
int main() {
#if 1
auto seed = 2912287549; // fixed seed for demo
#else
auto seed = std::random_device{}();
std::cout << "SEED: " << seed << "\n";
#endif
std::mt19937 prng { seed };
G g;
generate_random_graph(g, 100, 400, prng);
print_graph(g);
V start_vertex = prng()%num_vertices(g);
V end_vertex = prng()%num_vertices(g);
size_t visited;
std::vector<boost::default_color_type> colors(num_vertices(g), boost::default_color_type{});
std::vector<V> _pred(num_vertices(g), g.null_vertex());
std::vector<size_t> _dist(num_vertices(g), -1ull);
my_visitor vis { end_vertex, visited };
auto predmap = _pred.data(); // interior properties: boost::get(boost::vertex_predecessor, g);
auto distmap = _dist.data(); // interior properties: boost::get(boost::vertex_distance, g);
try {
std::cout << "Searching from #" << start_vertex << " to #" << end_vertex << "...\n";
boost::dijkstra_shortest_paths(g, start_vertex,
boost::visitor(vis).
color_map(colors.data()).
distance_map(distmap).
predecessor_map(predmap).
weight_map(boost::make_constant_property<E>(1ul))
);
std::cout << "No path found\n";
return 0;
} catch(my_visitor::done const&) {
std::cout << "Percentage skipped: " << (100.0*visited/num_vertices(g)) << "%\n";
}
size_t distance = distmap[end_vertex];
std::cout << "Distance from #" << start_vertex << " to #" << end_vertex << ": " << distance << "\n";
if (distance != size_t(-1)) {
std::deque<V> path;
for (V current = end_vertex;
current != g.null_vertex()
&& predmap[current] != current
&& current != start_vertex;)
{
path.push_front(predmap[current]);
current = predmap[current];
}
std::cout << "Path from #" << start_vertex << " to #" << end_vertex << ": ";
std::copy(path.begin(), path.end(), std::ostream_iterator<V>(std::cout, ", "));
std::cout << end_vertex << "\n";
}
}
It generates random undirected graphs with 100 vertices and 400 edges.
For the specific demo seed it prints the following output:
0 <--> 45 46 15 83 69 32 38 68 37
1 <--> 29 52 99 85 10 19 30 78
2 <--> 42 7 35 80 25 9 23 23
3 <--> 29 9 15 77 7 58 42
4 <--> 75 56 98 24 14 40 97 34 84 37 80 30 62
5 <--> 58 46 80 71
6 <--> 89 12 47 88 80
7 <--> 62 69 2 86 88 74 8 33 13 76 3 9 86 48
8 <--> 64 26 31 7 94 95 77
9 <--> 83 53 76 3 43 55 7 2 67 72
10 <--> 51 16 21 20 1 63 31
11 <--> 38 50 19 88 16 52
12 <--> 46 6 85 21 61 39
13 <--> 95 24 17 51 7
14 <--> 24 4 43 53
15 <--> 0 51 70 3 43 34
16 <--> 72 10 23 99 28 35 22 11 96 99 19 38 39
17 <--> 84 25 13 54 74 96 28
18 <--> 90 54 88 78
19 <--> 63 11 61 20 73 22 1 63 90 75 16
20 <--> 70 57 79 35 19 10 65 79 45
21 <--> 49 89 43 50 10 38 12 26 67
22 <--> 41 49 95 99 25 39 23 16 19 81
23 <--> 35 16 22 95 2 69 2
24 <--> 76 85 13 42 14 4 85 88
25 <--> 98 17 22 72 92 60 2 51
26 <--> 65 48 62 8 50 86 44 37 21 48
27 <--> 42 82
28 <--> 92 46 89 16 50 53 59 17 94
29 <--> 1 33 3 46 91 96 46 48
30 <--> 60 96 70 79 1 48 4
31 <--> 37 66 50 8 59 72 32 87 10 67
32 <--> 84 77 49 71 0 31 81 75 98 66
33 <--> 29 83 66 7 69 74 80 79
34 <--> 90 59 73 61 47 4 75 87 15
35 <--> 51 23 46 20 16 2 68
36 <--> 70
37 <--> 31 41 77 68 70 26 70 4 0 60
38 <--> 11 65 74 0 21 39 50 94 16 86
39 <--> 48 88 38 22 12 89 16
40 <--> 81 92 86 4 55
41 <--> 22 37 74 64 63 63 79
42 <--> 27 2 24 84 90 65 67 76 72 93 3
43 <--> 51 75 21 54 9 65 14 53 44 15
44 <--> 74 82 26 43
45 <--> 0 86 70 46 94 89 20
46 <--> 0 12 28 35 45 96 5 29 29
47 <--> 96 51 6 82 62 34 88 78
48 <--> 26 99 39 50 59 78 30 29 7 26
49 <--> 21 22 52 32 99 61 55 69 66 57
50 <--> 82 11 31 21 26 65 28 48 38 94 55
51 <--> 43 35 10 47 15 55 13 55 88 25 69 84
52 <--> 86 49 66 1 93 55 11 74 90
53 <--> 89 76 9 76 82 28 77 43 14
54 <--> 87 43 17 98 59 18 66
55 <--> 68 76 51 65 51 81 52 9 49 92 50 40
56 <--> 4 82 95 88 80
57 <--> 20 87 66 62 49
58 <--> 5 3
59 <--> 34 75 71 28 31 48 54 70 96
60 <--> 81 30 81 87 61 61 25 37
61 <--> 78 62 97 19 49 34 12 60 60
62 <--> 7 26 69 87 61 70 92 57 47 90 4
63 <--> 19 41 41 10 72 19
64 <--> 8 92 41 95 86
65 <--> 26 38 50 42 55 43 83 79 20 79
66 <--> 52 31 33 57 87 54 32 49
67 <--> 97 42 98 9 31 21
68 <--> 55 74 96 37 0 98 35
69 <--> 7 97 62 0 97 33 70 49 75 51 23
70 <--> 20 83 45 78 15 69 30 37 62 37 59 78 77 36
71 <--> 83 74 59 32 5 88
72 <--> 16 74 31 25 85 83 42 63 9
73 <--> 74 34 87 19
74 <--> 68 73 41 44 72 71 7 38 17 96 33 82 52
75 <--> 4 43 59 86 32 34 19 69 85
76 <--> 24 53 55 53 9 42 7
77 <--> 32 37 79 53 3 70 96 90 8
78 <--> 61 70 70 48 1 18 47
79 <--> 20 77 41 30 98 65 20 33 65 82
80 <--> 82 81 86 93 56 5 33 2 6 4
81 <--> 40 60 60 80 91 55 32 22
82 <--> 80 50 44 56 88 53 47 27 74 79
83 <--> 9 70 71 0 33 95 72 65
84 <--> 32 17 42 86 4 51
85 <--> 24 96 12 87 24 1 72 89 87 75
86 <--> 52 45 40 7 84 26 75 80 7 64 38
87 <--> 54 57 73 85 62 60 66 31 85 34
88 <--> 7 39 82 56 11 6 51 24 18 47 71
89 <--> 53 21 6 28 99 92 45 85 39
90 <--> 34 42 96 18 77 19 62 52
91 <--> 81 29
92 <--> 28 40 64 62 25 89 55
93 <--> 52 80 42
94 <--> 8 45 50 28 38
95 <--> 22 13 83 56 23 64 8
96 <--> 85 47 30 68 46 90 74 17 16 77 29 59
97 <--> 69 67 61 69 4
98 <--> 25 4 54 79 68 67 32
99 <--> 22 48 16 89 1 49 16
Searching from #20 to #27...
Percentage skipped: 91%
Distance from #20 to #27: 3
Path from #20 to #27: 20, 65, 42, 27
As you can see, 91% of nodes weren't visited.
Notes
The docs say to use breadth-first search when the edge weight is constant. I couldn't make that work sadly.
Assuming that algorithmic equivalence is asserted, the paths will still be shortest using the early-out (assuming that the edge weight is constant).