How can I interpolate between n colors.
Simple case of 2 colors
Consider a more simple case first, where we want to find the mid-point of 2 colors.
Color1 is RGB ( 255, 0, 0 ) // Red
Color2 is RGB ( 128, 128, 128 ) // Grey
The solution being the mid-point between each R, G, B considered separately.
RGB ( 128 + 64, 128 / 2, 128 / 2 ) = RGB ( 192, 64, 64 )
Since the mid-point is exactly in between the two and there is a linear relationship to the interpolation, then its possiable to interpolate by a fractional amount such as 0.25 between Color1 and Color2, the color should be closer to Color1.
RGB ( 255 - 32, 32, 32 ) = RGB ( 223, 32, 32 )
Case of n colors
The case I wish to find a solution for is where there are n colors where each color has a fractional weighting totaling up to 1.0.
(Guessing, I guess each color could be considered to be a point in a 3 dimensional space and the weighting describes how far relatively the interpolated point is to each color point)
The color interpolation is linear RGB only.
Under some conditions I guess there MAY be multiple integer values which are solutions to the problem, for example if there are a n few colors which have similar value.
I read there is bi-linear interpolation which may help to solve this.
Usually the number of colors wouldn't exceed 5, it would usually be 2, 3 or 4 colors.