I am trying to go through the assignment 1 for Stanford cs244n class. Problem 1b highly recommend optimization for the Softmax function. I managed to get the Softmax of the N dimensional vector. I also got the Softmax of the MxN dimensional matrix but used a for loop through the columns. I have the following code:
def softmax(x):
orig_shape = x.shape
# Matrix
if len(x.shape) > 1:
softmax = np.zeros(orig_shape)
for i,col in enumerate(x):
softmax[i] = np.exp(col - np.max(col))/np.sum(np.exp(col - np.max(col)))
# Vector
else:
softmax = np.exp(x - np.max(x))/np.sum(np.exp(x - np.max(x)))
return softmax
Can I implement a more optimized Matrix implementation?
Using NumPy broadcasting
on relevant ufuncs
and that covers ndarrays of generic number of dimensions -
exp_max = np.exp(x - np.max(x,axis=-1,keepdims=True))
out = exp_max/np.sum(exp_max,axis=-1,keepdims=True)
You can try to use np.apply_along_axis
, where you have to specify which axis to execute your code (in your case axis=1
).
Here's a working example:
In [1]: import numpy as np
In [2]: def softmax(x):
...: orig_shape = x.shape
...:
...: # Matrix
...: if len(x.shape) > 1:
...: softmax = np.zeros(orig_shape)
...: for i,col in enumerate(x):
...: softmax[i] = np.exp(col - np.max(col))/np.sum(np.exp(col - np.max(col)))
...: # Vector
...: else:
...: softmax = np.exp(x - np.max(x))/np.sum(np.exp(x - np.max(x)))
...: return softmax
...:
In [3]: def softmax_vectorize(x):
...: return np.exp(x - np.max(x))/np.sum(np.exp(x - np.max(x)))
...:
In [4]: X = np.array([[1, 0, 0, 4, 5, 0, 7],
...: [1, 0, 0, 4, 5, 0, 7],
...: [1, 0, 0, 4, 5, 0, 7]])
In [5]: print softmax(X)
[[ 2.08239574e-03 7.66070581e-04 7.66070581e-04 4.18260365e-02
1.13694955e-01 7.66070581e-04 8.40098401e-01]
[ 2.08239574e-03 7.66070581e-04 7.66070581e-04 4.18260365e-02
1.13694955e-01 7.66070581e-04 8.40098401e-01]
[ 2.08239574e-03 7.66070581e-04 7.66070581e-04 4.18260365e-02
1.13694955e-01 7.66070581e-04 8.40098401e-01]]
In [6]: print np.apply_along_axis(softmax_vecorize, axis=1, arr=X)
[[ 2.08239574e-03 7.66070581e-04 7.66070581e-04 4.18260365e-02
1.13694955e-01 7.66070581e-04 8.40098401e-01]
[ 2.08239574e-03 7.66070581e-04 7.66070581e-04 4.18260365e-02
1.13694955e-01 7.66070581e-04 8.40098401e-01]
[ 2.08239574e-03 7.66070581e-04 7.66070581e-04 4.18260365e-02
1.13694955e-01 7.66070581e-04 8.40098401e-01]]