可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
My code is follow the class of machine learning of google.The two code are same.I don't know why it show error.May be the type of variable is error.But google's code is same to me.Who has ever had this problem?
This is error
[0 1 2]
[0 1 2]
Traceback (most recent call last):
File "/media/joyce/oreo/python/machine_learn/VisualizingADecisionTree.py", line 34, in <module>
graph.write_pdf("iris.pdf")
AttributeError: 'list' object has no attribute 'write_pdf'
[Finished in 0.4s with exit code 1]
[shell_cmd: python -u "/media/joyce/oreo/python/machine_learn/VisualizingADecisionTree.py"]
[dir: /media/joyce/oreo/python/machine_learn]
[path: /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games]
This is code
import numpy as np
from sklearn.datasets import load_iris
from sklearn import tree
iris = load_iris()
test_idx = [0, 50, 100]
# training data
train_target = np.delete(iris.target, test_idx)
train_data = np.delete(iris.data, test_idx, axis=0)
# testing data
test_target = iris.target[test_idx]
test_data = iris.data[test_idx]
clf = tree.DecisionTreeClassifier()
clf.fit(train_data, train_target)
print test_target
print clf.predict(test_data)
# viz code
from sklearn.externals.six import StringIO
import pydot
dot_data = StringIO()
tree.export_graphviz(clf,
out_file=dot_data,
feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True, rounded=True,
impurity=False)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
graph.write_pdf("iris.pdf")
回答1:
pydot.graph_from_dot_data()
returns a list, so try:
graph = pydot.graph_from_dot_data(dot_data.getvalue())
graph[0].write_pdf("iris.pdf")
回答2:
I think you are using newer version of python. Please try with pydotplus.
import pydotplus
...
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
graph.write_pdf("iris.pdf")
This should do it.
回答3:
I had exactly the same issue. Turned out that I hadn't installed graphviz. Once i did that it started to work.
回答4:
import pydotplus
...
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
graph.write_pdf("iris.pdf")
I have Python 3.6.0 |Anaconda 4.3.1 and get error:
File "C:\Anaconda\lib\site-packages\pydotplus\graphviz.py", line
1960, in create
'GraphViz\'s executables not found')
InvocationException: GraphViz's executables not found
回答5:
@Alex Sokolov, for my case in window, i downloaded and install / unzip the following to a folder then setup the PATH in Windows environment variables. re-run the py code works for me. hope is helpful to you.
回答6:
I install scikit-learn via conda and all of about not work.
Firstly, I have to install libtool
brew install libtool --universal
Then I follow this sklearn guide
Then change the python file to this code
clf = clf.fit(train_data, train_target)
tree.export_graphviz(clf,out_file='tree.dot')
Finally convert to png in terminal
dot -Tpng tree.dot -o tree.png
回答7:
I tried the previous answers and still got a error when running the script Therefore,
I just used pydotplus
import pydotplus
and install the "graphviz" by using:
sudo apt-get install graphviz
Then it worked for me, and I added
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
graph.write_pdf("iris.pdf")
Thanks to the previous contributors.
回答8:
It works as the following on Python3.7 but don't forget to install pydot using Anaconda prompt:
from sklearn.externals.six import StringIO
import pydot
# viz code
dot_data = StringIO()
tree.export_graphviz(clf, out_file=dot_data, feature_names=iris.feature_names,
class_names=iris.target_names, filled=True, rounded=True,
impurity=False)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
graph[0].write_pdf('iris.pdf')
回答9:
I hope this helps, I was having a similar issue. I decided not to use pydot / pydotplus, but rather graphviz. I modified (barely) the code and it works wonders! :)
# 2. Train classifier
# Testing Data
# Examples used to "test" the classifier's accuracy
# Not part of the training data
import numpy as np
from sklearn.datasets import load_iris
from sklearn import tree
iris = load_iris()
test_idx = [0, 50, 100] # Grabs one example of each flower for testing data (in the data set it so happens to be that
# each flower begins at 0, 50, and 100
# training data
train_target = np.delete(iris.target, test_idx) # Delete all but 3 for training target data
train_data = np.delete(iris.data, test_idx, axis=0) # Delete all but 3 for training data
# testing data
test_target = iris.target[test_idx] # Get testing target data
test_data = iris.data[test_idx] # Get testing data
# create decision tree classifier and train in it on the testing data
clf = tree.DecisionTreeClassifier()
clf.fit(train_data, train_target)
# Predict label for new flower
print(test_target)
print(clf.predict(test_data))
# Visualize the tree
from sklearn.externals.six import StringIO
import graphviz
dot_data = StringIO()
tree.export_graphviz(clf,
out_file=dot_data,
feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True, rounded=True,
impurity=False)
graph = graphviz.Source(dot_data.getvalue())
graph.render("iris.pdf", view=True)