I have a set of related classes that all inherit from one base class. I would like to use a factory method to instantiate objects for these classes. I want to do this because then I can store the objects in a dictionary keyed by the class name before returning the object to the caller. Then if there is a request for an object of a particular class, I can check to see whether one already exists in my dictionary. If not, I'll instantiate it and add it to the dictionary. If so, then I'll return the existing object from the dictionary. This will essentially turn all the classes in my module into singletons.
I want to do this because the base class that they all inherit from does some automatic wrapping of the functions in the subclasses, and I don't want to the functions to get wrapped more than once, which is what happens currently if two objects of the same class are created.
The only way I can think of doing this is to check the stacktrace in the __init__()
method of the base class, which will always be called, and to throw an exception if the stacktrace does not show that the request to make the object is coming from the factory function.
Is this a good idea?
Edit: Here is the source code for my base class. I've been told that I need to figure out metaclasses to accomplish this more elegantly, but this is what I have for now. All Page objects use the same Selenium Webdriver instance, which is in the driver module imported at the top. This driver is very expensive to initialize -- it is initialized the first time a LoginPage is created. After it is initialized the initialize()
method will return the existing driver instead of creating a new one. The idea is that the user must begin by creating a LoginPage. There will eventually be dozens of Page classes defined and they will be used by unit testing code to verify that the behavior of a website is correct.
from driver import get_driver, urlpath, initialize
from settings import urlpaths
class DriverPageMismatchException(Exception):
pass
class URLVerifyingPage(object):
# we add logic in __init__() to check the expected urlpath for the page
# against the urlpath that the driver is showing - we only want the page's
# methods to be invokable if the driver is actualy at the appropriate page.
# If the driver shows a different urlpath than the page is supposed to
# have, the method should throw a DriverPageMismatchException
def __init__(self):
self.driver = get_driver()
self._adjust_methods(self.__class__)
def _adjust_methods(self, cls):
for attr, val in cls.__dict__.iteritems():
if callable(val) and not attr.startswith("_"):
print "adjusting:"+str(attr)+" - "+str(val)
setattr(
cls,
attr,
self._add_wrapper_to_confirm_page_matches_driver(val)
)
for base in cls.__bases__:
if base.__name__ == 'URLVerifyingPage': break
self._adjust_methods(base)
def _add_wrapper_to_confirm_page_matches_driver(self, page_method):
def _wrapper(self, *args, **kwargs):
if urlpath() != urlpaths[self.__class__.__name__]:
raise DriverPageMismatchException(
"path is '"+urlpath()+
"' but '"+urlpaths[self.__class.__name__]+"' expected "+
"for "+self.__class.__name__
)
return page_method(self, *args, **kwargs)
return _wrapper
class LoginPage(URLVerifyingPage):
def __init__(self, username=username, password=password, baseurl="http://example.com/"):
self.username = username
self.password = password
self.driver = initialize(baseurl)
super(LoginPage, self).__init__()
def login(self):
driver.find_element_by_id("username").clear()
driver.find_element_by_id("username").send_keys(self.username)
driver.find_element_by_id("password").clear()
driver.find_element_by_id("password").send_keys(self.password)
driver.find_element_by_id("login_button").click()
return HomePage()
class HomePage(URLVerifyingPage):
def some_method(self):
...
return SomePage()
def many_more_methods(self):
...
return ManyMorePages()
It's no big deal if a page gets instantiated a handful of times -- the methods will just get wrapped a handful of times and a handful of unnecessary checks will take place, but everything will still work. But it would be bad if a page was instantiated dozens or hundreds or tens of thousands of times. I could just put a flag in the class definition for each page and check to see if the methods have already been wrapped, but I like the idea of keeping the class definitions pure and clean and shoving all the hocus-pocus into a deep corner of my system where no one can see it and it just works.