Is there a regular language to represent regular e

2019-07-24 18:24发布

问题:

Specifically, I noticed that the language of regular expressions itself isn't regular. So, I can't use a regular expression to parse a given regular expression. I need to use a parser since the language of the regular expression itself is context free.

Is there any way regular expressions can be represented in a way that the resulting string can be parsed using a regular expression?

Note: My question isn't about whether there is a regexp to match the current syntax of regexes, but whether there exists a "representation" for regular expressions as we know it today (maybe not a neat as what we know them as today) that can be parsed using regular expressions. Also, please could someone remove the dup since it isn't a dup. I'm asking something completely different. I already know that the current language of regular expressions isn't regular (it is how I started my original question).

回答1:

The answer is probably NO.

As you have pointed out, set of all possible regular expressions itself is not a regular set. Any TRUE regular expression (not those extended) can be converted into finite automata (FA). If regular expression can be represented in a form that can be parsed by itself, then FA can be parsed by regular expression as well.

But that's not possible as far as I know. RE itself can be reduced into three basic operation(According to the Dragon Book):

  1. concatenation: e.g. ab
  2. alternation: e.g. a|b
  3. kleen closure: e.g. a*

The kleen closure can match infinite number of characters, but it cannot know how many characters to match. Just think such case: you want to match 3 consecutive as. Then the corresponding regular expression is /aaa/. But what if you want match 4, 5, 6... as? Parser with only one RE cannot know the exact number of as. So it fails to give the right matching to arbitrary expressions. However, the RE parser has to match infinite different forms of REs. According to your expression, a regular expression cannot match all the possibilities.

Well, the only difference of a RE parser is that it does not need a tokenizer.(probably that's why RE is used in lexical analysis) Every character in RE is a token (excluding those escape charcters). But to parse RE, whatever it is converted,one has to face up with NFA/DFA/TREE... all equivalent structures that cannot be parsed by RE itself.