Hi I am trying to build a Mixture-of-experts neural network. I found a code here: http://blog.sina.com.cn/s/blog_dc3c53e90102x9xu.html. My goal is that the gate and expert come from different data, but with same dimensions.
def sliced(x,expert_num):
return x[:,:,:expert_num]
def reduce(x, axis):
return K.sum(x, axis=axis, keepdims=True)
def gatExpertLayer(inputGate, inputExpert, expert_num, nb_class):
#expert_num=30
#nb_class=10
input_vector1 = Input(shape=(inputGate.shape[1:]))
input_vector2 = Input(shape=(inputExpert.shape[1:]))
#The gate
gate = Dense(expert_num*nb_class, activation='softmax')(input_vector1)
gate = Reshape((1,nb_class, expert_num))(gate)
gate = Lambda(sliced, output_shape=(nb_class, expert_num), arguments={'expert_num':expert_num})(gate)
#The expert
expert = Dense(nb_class*expert_num, activation='sigmoid')(input_vector2)
expert = Reshape((nb_class, expert_num))(expert)
#The output
output = tf.multiply(gate, expert)
#output = keras.layers.merge([gate, expert], mode='mul')
output = Lambda(reduce, output_shape=(nb_class,), arguments={'axis': 2})(output)
model = Model(input=[input_vector1, input_vector2], output=output)
model.compile(loss='mean_squared_error', metrics=['mse'], optimizer='adam')
return model
However, I got "'NoneType' object has no attribute '_inbound_nodes'". I checked other similar questions here: AttributeError: 'NoneType' object has no attribute '_inbound_nodes' while trying to add multiple keras Dense layers but the problem is fixed with the Lambda function of keras to convert into a layer.