I am attempting to calculate the Levenshtein distance between two strings using dynamic programming. This is being done through Hackerrank, so I have timing constraints. I used a techenique I saw in: How are Dynamic Programming algorithms implemented in idiomatic Haskell? and it seems to be working. Unfortunaly, it is timing out in one test case. I do not have access to the specific test case, so I don't know the exact size of the input.
import Control.Monad
import Data.Array.IArray
import Data.Array.Unboxed
main = do
n <- readLn
replicateM_ n $ do
s1 <- getLine
s2 <- getLine
print $ editDistance s1 s2
editDistance :: String -> String -> Int
editDistance s1 s2 = dynamic editDistance' (length s1, length s2)
where
s1' :: UArray Int Char
s1' = listArray (1,length s1) s1
s2' :: UArray Int Char
s2' = listArray (1,length s2) s2
editDistance' table (i,j)
| min i j == 0 = max i j
| otherwise = min' (table!((i-1),j) + 1) (table!(i,(j-1)) + 1) (table!((i-1),(j-1)) + cost)
where
cost = if s1'!i == s2'!j then 0 else 1
min' a b = min (min a b)
dynamic :: (Array (Int,Int) Int -> (Int,Int) -> Int) -> (Int,Int) -> Int
dynamic compute (xBnd, yBnd) = table!(xBnd,yBnd)
where
table = newTable $ map (\coord -> (coord, compute table coord)) [(x,y) | x<-[0..xBnd], y<-[0..yBnd]]
newTable xs = array ((0,0),fst (last xs)) xs
I've switched to using arrays, but that speed up was insufficient. I cannot use Unboxed arrays, because this code relies on laziness. Are there any glaring performance mistakes I have made? Or how else can I speed it up?