透视使用Tablefunc多列(Pivot on Multiple Columns using Ta

2019-07-21 15:11发布

有没有人使用tablefunc在多个变量转动,而不是只用行名称 ? 文档注释 :

“额外”列有望成为具有相同ROW_NAME值的所有行相同。

我不知道如何做到这一点,而不结合,我想转动(这我很怀疑会给我我所需要的速度)的列。 一种可能的方式做,这将是使该实体的数字,并将其添加到localt为毫秒,但是这似乎是一个摇摇欲坠的方式进行。

我已经编辑在对这个问题的回应中使用的数据: PostgreSQL的交叉表查询 。

 CREATE TEMP TABLE t4 (
  timeof   timestamp
 ,entity    character
 ,status    integer
 ,ct        integer);

 INSERT INTO t4 VALUES 
  ('2012-01-01', 'a', 1, 1)
 ,('2012-01-01', 'a', 0, 2)
 ,('2012-01-02', 'b', 1, 3)
 ,('2012-01-02', 'c', 0, 4);

 SELECT * FROM crosstab(
     'SELECT timeof, entity, status, ct
      FROM   t4
      ORDER  BY 1,2,3'
     ,$$VALUES (1::text), (0::text)$$)
 AS ct ("Section" timestamp, "Attribute" character, "1" int, "0" int);

返回:

 Section                   | Attribute | 1 | 0
---------------------------+-----------+---+---
 2012-01-01 00:00:00       |     a     | 1 | 2
 2012-01-02 00:00:00       |     b     | 3 | 4

因此,作为文档状态, 多余的列又名“属性”被认为是对每行名又名“科”一样。 因此,报告b。对于即使“实体”也有针对“传播时间间隔”值“C”值的第二行。

所需的输出:

Section                   | Attribute | 1 | 0
--------------------------+-----------+---+---
2012-01-01 00:00:00       |     a     | 1 | 2
2012-01-02 00:00:00       |     b     | 3 |  
2012-01-02 00:00:00       |     c     |   | 4

任何想法或引用?

多一点背景:我可能需要数十亿行做到这一点,我测试了存储,宽格式这个数据,看是否我可以使用tablefunc更有效地从长到宽幅去比定期聚集函数。
我有大约100测量由每分钟约300元。 通常情况下,我们需要比较特定第二对于给定的单位作出的不同的测量,所以我们需要去宽幅非常频繁。 此外,在一个特定的实体所进行的测量是高度可变的。

编辑:我发现这个资源: http://www.postgresonline.com/journal/categories/24-tablefunc 。

Answer 1:

与您的查询的问题是, bc共享相同的时间戳2012-01-02 00:00:00 ,和你有timestamptimeof先在您的查询,所以-即使你加入大胆的重点- bc是落于同一组只是额外列2012-01-02 00:00:00 。 仅第一( b ),因为被返回(引用的手册) :

row_name列必须是第一个。 该categoryvalue字段必须是最后两列,按照这个顺序。 之间的任何列row_namecategory都被视为“额外”。 “额外”列预计将具有相同的所有行相同 row_name值。

大胆重点煤矿。
刚刚恢复的前两列的顺序,以使entity行名称和它的作品如期望的那样:

SELECT * FROM crosstab(
      'SELECT entity, timeof, status, ct
       FROM   t4
       ORDER  BY 1'
      ,'VALUES (1), (0)')
 AS ct (
    "Attribute" character
   ,"Section" timestamp
   ,"status_1" int
   ,"status_0" int);

entity必须是唯一的,当然。

重申

  • row_name 第一
  • (可选) extra下一
  • category (由第二个参数定义的)和value 为止

额外的列从每个第一行充满row_name分区。 从其他行值被忽略时,每个只有一列row_name来填补。 通常,这些将是一个的每一行相同row_name ,但是这取决于你。

对于不同的安装在你的答案 :

SELECT localt, entity
     , msrmnt01, msrmnt02, msrmnt03, msrmnt04, msrmnt05  -- , more?
FROM   crosstab(
        'SELECT dense_rank() OVER (ORDER BY localt, entity)::int AS row_name
              , localt, entity -- additional columns
              , msrmnt, val
         FROM   test
         -- WHERE  ???   -- instead of LIMIT at the end
         ORDER  BY localt, entity, msrmnt
         -- LIMIT ???'   -- instead of LIMIT at the end
     , $$SELECT generate_series(1,5)$$)  -- more?
     AS ct (row_name int, localt timestamp, entity int
          , msrmnt01 float8, msrmnt02 float8, msrmnt03 float8, msrmnt04 float8, msrmnt05 float8 -- , more?
            )
LIMIT 1000  -- ??!!

难怪在测试中查询可怕执行。 测试设置有14M行,你处理所有这些投掷大部分废除前LIMIT 1000 。 对于减少的结果集添加WHERE条件或限制在源查询!

另外,和你一起工作的阵列是在它的上面不必要的昂贵。 我生成DENSE_RANK(),而不是替代行名称。

DB <>小提琴这里-一个简单的测试设置和更少的行。



Answer 2:

在我原来的问题,我应该用这个对我的样本数据:

CREATE TEMP TABLE t4 (
 timeof    date
,entity    integer
,status    integer
,ct        integer);
INSERT INTO t4 VALUES 
 ('2012-01-01', 1, 1, 1)
,('2012-01-01', 1, 0, 2)
,('2012-01-01', 3, 0, 3)
,('2012-01-02', 2, 1, 4)
,('2012-01-02', 3, 1, 5)
,('2012-01-02', 3, 0, 6);

有了这个,我必须转动两个传播时间间隔和实体。 由于tablefunc只使用一个列摆动,你需要找到一种方法来的东西,在该列两个维度。 ( http://www.postgresonline.com/journal/categories/24-tablefunc )。 我去的阵列,就像例如在该链接。

SELECT (timestamp 'epoch' + row_name[1] * INTERVAL '1 second')::date 
           as localt, 
           row_name[2] As entity, status1, status0
FROM crosstab('SELECT ARRAY[extract(epoch from timeof), entity] as row_name,
                    status, ct
               FROM t4 
               ORDER BY timeof, entity, status'
     ,$$VALUES (1::text), (0::text)$$) 
          as ct (row_name integer[], status1 int, status0 int)

FWIW,我试图用一个字符数组,到目前为止,它看起来这是我的设置速度更快; 9.2.3 PostgreSQL的。

这是结果和期望的输出。

localt           | entity | status1 | status0
--------------------------+---------+--------
2012-01-01       |   1    |    1    |   2
2012-01-01       |   3    |         |   3
2012-01-02       |   2    |    4    |  
2012-01-02       |   3    |    5    |   6

我很好奇如何执行在更大的数据集,并会在稍后的日期报到。



Answer 3:

好了,我跑这对接近我的使用情况的表。 无论我做错了或交叉是不适合我的使用。

首先,我做了一些类似的数据:

CREATE TABLE public.test (
    id serial primary key,
    msrmnt integer,
    entity integer,
    localt timestamp,
    val    double precision
);
CREATE INDEX ix_test_msrmnt
   ON public.test (msrmnt);
 CREATE INDEX ix_public_test_201201_entity
   ON public.test (entity);
CREATE INDEX ix_public_test_201201_localt
  ON public.test (localt);
insert into public.test (msrmnt, entity, localt, val)
select *
from(
SELECT msrmnt, entity, localt, random() as val 
FROM generate_series('2012-01-01'::timestamp, '2012-01-01 23:59:00'::timestamp, interval '1 minutes') as localt
join 
(select *
FROM generate_series(1, 50, 1) as msrmnt) as msrmnt
on 1=1
join 
(select *
FROM generate_series(1, 200, 1) as entity) as entity
on 1=1) as data;

然后我跑了交叉代码几次:

explain analyze
SELECT (timestamp 'epoch' + row_name[1] * INTERVAL '1 second')::date As localt, row_name[2] as entity
    ,msrmnt01,msrmnt02,msrmnt03,msrmnt04,msrmnt05,msrmnt06,msrmnt07,msrmnt08,msrmnt09,msrmnt10
    ,msrmnt11,msrmnt12,msrmnt13,msrmnt14,msrmnt15,msrmnt16,msrmnt17,msrmnt18,msrmnt19,msrmnt20
    ,msrmnt21,msrmnt22,msrmnt23,msrmnt24,msrmnt25,msrmnt26,msrmnt27,msrmnt28,msrmnt29,msrmnt30
    ,msrmnt31,msrmnt32,msrmnt33,msrmnt34,msrmnt35,msrmnt36,msrmnt37,msrmnt38,msrmnt39,msrmnt40
    ,msrmnt41,msrmnt42,msrmnt43,msrmnt44,msrmnt45,msrmnt46,msrmnt47,msrmnt48,msrmnt49,msrmnt50
    FROM crosstab('SELECT ARRAY[extract(epoch from localt), entity] as row_name, msrmnt, val
               FROM public.test
               ORDER BY localt, entity, msrmnt',$$VALUES  ( 1::text),( 2::text),( 3::text),( 4::text),( 5::text),( 6::text),( 7::text),( 8::text),( 9::text),(10::text)
                                                         ,(11::text),(12::text),(13::text),(14::text),(15::text),(16::text),(17::text),(18::text),(19::text),(20::text)
                                                         ,(21::text),(22::text),(23::text),(24::text),(25::text),(26::text),(27::text),(28::text),(29::text),(30::text)
                                                         ,(31::text),(32::text),(33::text),(34::text),(35::text),(36::text),(37::text),(38::text),(39::text),(40::text)
                                                         ,(41::text),(42::text),(43::text),(44::text),(45::text),(46::text),(47::text),(48::text),(49::text),(50::text)$$)
        as ct (row_name integer[],msrmnt01 double precision, msrmnt02 double precision,msrmnt03 double precision, msrmnt04 double precision,msrmnt05 double precision, 
                    msrmnt06 double precision,msrmnt07 double precision, msrmnt08 double precision,msrmnt09 double precision, msrmnt10 double precision
                 ,msrmnt11 double precision, msrmnt12 double precision,msrmnt13 double precision, msrmnt14 double precision,msrmnt15 double precision, 
                    msrmnt16 double precision,msrmnt17 double precision, msrmnt18 double precision,msrmnt19 double precision, msrmnt20 double precision
                 ,msrmnt21 double precision, msrmnt22 double precision,msrmnt23 double precision, msrmnt24 double precision,msrmnt25 double precision, 
                    msrmnt26 double precision,msrmnt27 double precision, msrmnt28 double precision,msrmnt29 double precision, msrmnt30 double precision
                 ,msrmnt31 double precision, msrmnt32 double precision,msrmnt33 double precision, msrmnt34 double precision,msrmnt35 double precision, 
                    msrmnt36 double precision,msrmnt37 double precision, msrmnt38 double precision,msrmnt39 double precision, msrmnt40 double precision
                 ,msrmnt41 double precision, msrmnt42 double precision,msrmnt43 double precision, msrmnt44 double precision,msrmnt45 double precision, 
                    msrmnt46 double precision,msrmnt47 double precision, msrmnt48 double precision,msrmnt49 double precision, msrmnt50 double precision)
limit 1000

在第三次尝试获得此:

QUERY PLAN
Limit  (cost=0.00..20.00 rows=1000 width=432) (actual time=110236.673..110237.667 rows=1000 loops=1)
  ->  Function Scan on crosstab ct  (cost=0.00..20.00 rows=1000 width=432) (actual time=110236.672..110237.598 rows=1000 loops=1)
Total runtime: 110699.598 ms

然后我跑的标准溶液几次:

explain analyze
select localt, entity, 
 max(case when msrmnt =  1 then val else null end) as msrmnt01
,max(case when msrmnt =  2 then val else null end) as msrmnt02
,max(case when msrmnt =  3 then val else null end) as msrmnt03
,max(case when msrmnt =  4 then val else null end) as msrmnt04
,max(case when msrmnt =  5 then val else null end) as msrmnt05
,max(case when msrmnt =  6 then val else null end) as msrmnt06
,max(case when msrmnt =  7 then val else null end) as msrmnt07
,max(case when msrmnt =  8 then val else null end) as msrmnt08
,max(case when msrmnt =  9 then val else null end) as msrmnt09
,max(case when msrmnt = 10 then val else null end) as msrmnt10
,max(case when msrmnt = 11 then val else null end) as msrmnt11
,max(case when msrmnt = 12 then val else null end) as msrmnt12
,max(case when msrmnt = 13 then val else null end) as msrmnt13
,max(case when msrmnt = 14 then val else null end) as msrmnt14
,max(case when msrmnt = 15 then val else null end) as msrmnt15
,max(case when msrmnt = 16 then val else null end) as msrmnt16
,max(case when msrmnt = 17 then val else null end) as msrmnt17
,max(case when msrmnt = 18 then val else null end) as msrmnt18
,max(case when msrmnt = 19 then val else null end) as msrmnt19
,max(case when msrmnt = 20 then val else null end) as msrmnt20
,max(case when msrmnt = 21 then val else null end) as msrmnt21
,max(case when msrmnt = 22 then val else null end) as msrmnt22
,max(case when msrmnt = 23 then val else null end) as msrmnt23
,max(case when msrmnt = 24 then val else null end) as msrmnt24
,max(case when msrmnt = 25 then val else null end) as msrmnt25
,max(case when msrmnt = 26 then val else null end) as msrmnt26
,max(case when msrmnt = 27 then val else null end) as msrmnt27
,max(case when msrmnt = 28 then val else null end) as msrmnt28
,max(case when msrmnt = 29 then val else null end) as msrmnt29
,max(case when msrmnt = 30 then val else null end) as msrmnt30
,max(case when msrmnt = 31 then val else null end) as msrmnt31
,max(case when msrmnt = 32 then val else null end) as msrmnt32
,max(case when msrmnt = 33 then val else null end) as msrmnt33
,max(case when msrmnt = 34 then val else null end) as msrmnt34
,max(case when msrmnt = 35 then val else null end) as msrmnt35
,max(case when msrmnt = 36 then val else null end) as msrmnt36
,max(case when msrmnt = 37 then val else null end) as msrmnt37
,max(case when msrmnt = 38 then val else null end) as msrmnt38
,max(case when msrmnt = 39 then val else null end) as msrmnt39
,max(case when msrmnt = 40 then val else null end) as msrmnt40
,max(case when msrmnt = 41 then val else null end) as msrmnt41
,max(case when msrmnt = 42 then val else null end) as msrmnt42
,max(case when msrmnt = 43 then val else null end) as msrmnt43
,max(case when msrmnt = 44 then val else null end) as msrmnt44
,max(case when msrmnt = 45 then val else null end) as msrmnt45
,max(case when msrmnt = 46 then val else null end) as msrmnt46
,max(case when msrmnt = 47 then val else null end) as msrmnt47
,max(case when msrmnt = 48 then val else null end) as msrmnt48
,max(case when msrmnt = 49 then val else null end) as msrmnt49
,max(case when msrmnt = 50 then val else null end) as msrmnt50
from sample
group by localt, entity
limit 1000

在第三次尝试获得此:

QUERY PLAN
Limit  (cost=2257339.69..2270224.77 rows=1000 width=24) (actual time=19795.984..20090.626 rows=1000 loops=1)
  ->  GroupAggregate  (cost=2257339.69..5968242.35 rows=288000 width=24) (actual time=19795.983..20090.496 rows=1000 loops=1)
        ->  Sort  (cost=2257339.69..2293339.91 rows=14400088 width=24) (actual time=19795.626..19808.820 rows=50001 loops=1)
              Sort Key: localt
              Sort Method: external merge  Disk: 478568kB
              ->  Seq Scan on sample  (cost=0.00..249883.88 rows=14400088 width=24) (actual time=0.013..2245.247 rows=14400000 loops=1)
Total runtime: 20197.565 ms

所以,对于我来说,这似乎到目前为止这是交叉表不是一个解决办法。 而这仅仅是一天,当我有多个年。 事实上,我可能必须去与宽幅(未归一化)表,尽管它测量的实体提出是可变的,而新引入的事实,但我不会去到这里。

下面是一些使用的是Postgres 9.2.3我的设置:

name                    setting
max_connections             100
shared_buffers          2097152
effective_cache_size    6291456
maintenance_work_mem    1048576
work_mem                 262144


文章来源: Pivot on Multiple Columns using Tablefunc