Suppose I have a set of x,y coordinates that mark points along contour. Is there a way that I can build a spline representation of the contour that I can evaluate at a particular position along its length and recover interpolated x,y coordinates?
It is often not the case that there is a 1:1 correspondence between X and Y values, so univariate splines are no good to me. Bivariate splines would be fine, but as far as I can tell all of the functions for evaluating bivariate splines in scipy.interpolate
take x,y values and return z, whereas I need to give z and return x,y (since x,y are points on a line, each z maps to a unique x,y).
Here's a sketch of what I'd like to be able to do:
import numpy as np
from matplotlib.pyplot import plot
# x,y coordinates of contour points, not monotonically increasing
x = np.array([ 2., 1., 1., 2., 2., 4., 4., 3.])
y = np.array([ 1., 2., 3., 4., 2., 3., 2., 1.])
# f: X --> Y might not be a 1:1 correspondence
plot(x,y,'-o')
# get the cumulative distance along the contour
dist = [0]
for ii in xrange(x.size-1):
dist.append(np.sqrt((x[ii+1]-x[ii])**2 + (y[ii+1]-y[ii])**2))
d = np.array(dist)
# build a spline representation of the contour
spl = ContourSpline(x,y,d)
# resample it at smaller distance intervals
interp_d = np.linspace(d[0],d[-1],1000)
interp_x,interp_y = spl(interp_d)
You want to use a parametric spline, where instead of interpolating y
from the x
values, you set up a new parameter, t
, and interpolate both y
and x
from the values of t
, using univariate splines for both. How you assign t
values to each point affects the result, and using distance, as your question suggest, may be a good idea:
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
import scipy.interpolate
x = np.array([ 2., 1., 1., 2., 2., 4., 4., 3.])
y = np.array([ 1., 2., 3., 4., 2., 3., 2., 1.])
plt.plot(x,y, label='poly')
t = np.arange(x.shape[0], dtype=float)
t /= t[-1]
nt = np.linspace(0, 1, 100)
x1 = scipy.interpolate.spline(t, x, nt)
y1 = scipy.interpolate.spline(t, y, nt)
plt.plot(x1, y1, label='range_spline')
t = np.zeros(x.shape)
t[1:] = np.sqrt((x[1:] - x[:-1])**2 + (y[1:] - y[:-1])**2)
t = np.cumsum(t)
t /= t[-1]
x2 = scipy.interpolate.spline(t, x, nt)
y2 = scipy.interpolate.spline(t, y, nt)
plt.plot(x2, y2, label='dist_spline')
plt.legend(loc='best')
plt.show()
Here is an example using splprep and splev:
import numpy as np
import scipy.interpolate
from matplotlib.pyplot import plot
# x,y coordinates of contour points, not monotonically increasing
x = np.array([2., 1., 1., 2., 2., 4., 4., 3.])
y = np.array([1., 2., 3., 4., 2., 3., 2., 1.])
# f: X --> Y might not be a 1:1 correspondence
plot(x, y, '-o')
# get the cumulative distance along the contour
dist = np.sqrt((x[:-1] - x[1:])**2 + (y[:-1] - y[1:])**2)
dist_along = np.concatenate(([0], dist.cumsum()))
# build a spline representation of the contour
spline, u = scipy.interpolate.splprep([x, y], u=dist_along, s=0)
# resample it at smaller distance intervals
interp_d = np.linspace(dist_along[0], dist_along[-1], 50)
interp_x, interp_y = scipy.interpolate.splev(interp_d, spline)
plot(interp_x, interp_y, '-o')
You can use the splprep and splev, have a look at scipy cookbook for example very similar to your problem.
http://wiki.scipy.org/Cookbook/Interpolation#head-34818696f8d7066bb3188495567dd776a451cf11