I'm using the code on the MatLab website, "Color-Based Segmentation Using the Lab* Color Space": http://www.mathworks.com/help/images/examples/color-based-segmentation-using-the-l-a-b-color-space.html
So I'm trying to select some areas myself instead of using the "load region_coordinates", using roipoly(fabric), but i get stuck. How do I save coordinates of the polygon I just drew? I'm actually following advice from lennon310 at Solution II, bottom of page: A few questions about color segmentation with L*a*b*
I'm not sure when to save region_coordinates
and do size(region_coordinates,1)
I made the following changes (Step 1):
1) Removed "load region_coordinates"
2) Added "region_coordinates = roipoly(fabric);"
Here's the code:
` %% Step 1
fabric = imread(file);
figure(1); %Create figure window. "If h is not the handle and is not the Number property value of an existing figure, but is an integer, then figure(h) creates a figure object and assigns its Number property the value h."
imshow(fabric)
title('fabric')
%load regioncoordinates; % 6 marices(?) labelled val(:,:,1-6), 5x2 (row x column)
region_coordinates = roipoly(fabric);
nColors = 6;
sample_regions = false([size(fabric,1) size(fabric,2) nColors]); %Initializing an Image Dimension, 3x3 (:,:,:) to zero? Zeros() for arrays only I guess.
%Size one is column, size two is row?
for count = 1:nColors
sample_regions(:,:,count) = roipoly(fabric,region_coordinates(:,1,count),region_coordinates(:,2,count));
end
figure, imshow(sample_regions(:,:,2)),title('sample region for red');
%%Step 2
% Convert your fabric RGB image into an L*a*b* image using rgb2lab .
lab_fabric = rgb2lab(fabric);
%Calculate the mean a* and b* value for each area that you extracted with roipoly. These values serve as your color markers in a*b* space.
a = lab_fabric(:,:,2);
b = lab_fabric(:,:,3);
color_markers = zeros([nColors, 2]);%... I think this is initializing a 6x2 blank(0) array for colour storage. 6 for colours, 2 for a&b colourspace.
for count = 1:nColors
color_markers(count,1) = mean2(a(sample_regions(:,:,count))); %Label for repmat, Marker for
color_markers(count,2) = mean2(b(sample_regions(:,:,count)));
end
%For example, the average color of the red sample region in a*b* space is
fprintf('[%0.3f,%0.3f] \n',color_markers(2,1),color_markers(2,2));
%% Step 3: Classify Each Pixel Using the Nearest Neighbor Rule %
color_labels = 0:nColors-1;
% Initialize matrices to be used in the nearest neighbor classification.
a = double(a);
b = double(b);
distance = zeros([size(a), nColors]);
%Perform classification, Elucidean Distance.
for count = 1:nColors
distance(:,:,count) = ( (a - color_markers(count,1)).^2 + (b - color_markers(count,2)).^2 ).^0.5;
end
[~, label] = min(distance,[],3);
label = color_labels(label);
clear distance;
%% Step 4: Display Results of Nearest Neighbor Classification % % The label matrix contains a color label for each pixel in the fabric image. % Use the label matrix to separate objects in the original fabric image by color.
rgb_label = repmat(label,[1 1 3]);
segmented_images = zeros([size(fabric), nColors],'uint8');
for count = 1:nColors
color = fabric;
color(rgb_label ~= color_labels(count)) = 0;
segmented_images(:,:,:,count) = color;
end
%figure, imshow(segmented_images(:,:,:,1)), title('Background of Fabric');
%Looks different somehow.
figure, imshow(segmented_images(:,:,:,2)), title('red objects');
figure, imshow(segmented_images(:,:,:,3)), title('green objects');
figure, imshow(segmented_images(:,:,:,4)), title('purple objects');
figure, imshow(segmented_images(:,:,:,5)), title('magenta objects');
figure, imshow(segmented_images(:,:,:,6)), title('yellow objects');
`