可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I have been trying to create a decorator that can be used with both functions and methods in python. This on it's own is not that hard, but when creating a decorator that takes arguments, it seems to be.
class methods(object):
def __init__(self, *_methods):
self.methods = _methods
def __call__(self, func):
def inner(request, *args, **kwargs):
print request
return func(request, *args, **kwargs)
return inner
def __get__(self, obj, type=None):
if obj is None:
return self
new_func = self.func.__get__(obj, type)
return self.__class__(new_func)
The above code wraps the function/method correctly, but in the case of a method, the request
argument is the instance it is operating on, not the first non-self argument.
Is there a way to tell if the decorator is being applied to a function instead of a method, and deal accordingly?
回答1:
To expand on the __get__
approach. This can be generalized into a decorator decorator.
class _MethodDecoratorAdaptor(object):
def __init__(self, decorator, func):
self.decorator = decorator
self.func = func
def __call__(self, *args, **kwargs):
return self.decorator(self.func)(*args, **kwargs)
def __get__(self, instance, owner):
return self.decorator(self.func.__get__(instance, owner))
def auto_adapt_to_methods(decorator):
"""Allows you to use the same decorator on methods and functions,
hiding the self argument from the decorator."""
def adapt(func):
return _MethodDecoratorAdaptor(decorator, func)
return adapt
In this way you can just make your decorator automatically adapt to the conditions it is used in.
def allowed(*allowed_methods):
@auto_adapt_to_methods
def wrapper(func):
def wrapped(request):
if request not in allowed_methods:
raise ValueError("Invalid method %s" % request)
return func(request)
return wrapped
return wrapper
Notice that the wrapper function is called on all function calls, so don't do anything expensive there.
Usage of the decorator:
class Foo(object):
@allowed('GET', 'POST')
def do(self, request):
print "Request %s on %s" % (request, self)
@allowed('GET')
def do(request):
print "Plain request %s" % request
Foo().do('GET') # Works
Foo().do('POST') # Raises
回答2:
The decorator is always applied to a function object -- have the decorator print
the type of its argument and you'll be able to confirm that; and it should generally return a function object, too (which is already a decorator with the proper __get__
!-) although there are exceptions to the latter.
I.e, in the code:
class X(object):
@deco
def f(self): pass
deco(f)
is called within the class body, and, while you're still there, f
is a function, not an instance of a method type. (The method is manufactured and returned in f
's __get__
when later f
is accessed as an attribute of X
or an instance thereof).
Maybe you can better explain one toy use you'd want for your decorator, so we can be of more help...?
Edit: this goes for decorators with arguments, too, i.e.
class X(object):
@deco(23)
def f(self): pass
then it's deco(23)(f)
that's called in the class body, f
is still a function object when passed as the argument to whatever callable deco(23)
returns, and that callable should still return a function object (generally -- with exceptions;-).
回答3:
Since you're already defining a __get__
to use your decorator on the Bound Method, you could pass a flag telling it if it's being used on a method or function.
class methods(object):
def __init__(self, *_methods, called_on_method=False):
self.methods = _methods
self.called_on_method
def __call__(self, func):
if self.called_on_method:
def inner(self, request, *args, **kwargs):
print request
return func(request, *args, **kwargs)
else:
def inner(request, *args, **kwargs):
print request
return func(request, *args, **kwargs)
return inner
def __get__(self, obj, type=None):
if obj is None:
return self
new_func = self.func.__get__(obj, type)
return self.__class__(new_func, called_on_method=True)
回答4:
A partial (specific) solution I have come up with relies on exception handling. I am attempting to create a decorator to only allow certain HttpRequest methods, but make it work with both functions that are views, and methods that are views.
So, this class will do what I want:
class methods(object):
def __init__(self, *_methods):
self.methods = _methods
def __call__(self, func):
@wraps(func)
def inner(*args, **kwargs):
try:
if args[0].method in self.methods:
return func(*args, **kwargs)
except AttributeError:
if args[1].method in self.methods:
return func(*args, **kwargs)
return HttpResponseMethodNotAllowed(self.methods)
return inner
Here are the two use cases: decorating a function:
@methods("GET")
def view_func(request, *args, **kwargs):
pass
and decorating methods of a class:
class ViewContainer(object):
# ...
@methods("GET", "PUT")
def object(self, request, pk, *args, **kwargs):
# stuff that needs a reference to self...
pass
Is there a better solution than to use exception handling?
回答5:
Here is a general way I found to detect whether a decorated callable is a function or method:
import functools
class decorator(object):
def __init__(self, func):
self._func = func
self._obj = None
self._wrapped = None
def __call__(self, *args, **kwargs):
if not self._wrapped:
if self._obj:
self._wrapped = self._wrap_method(self._func)
self._wrapped = functools.partial(self._wrapped, self._obj)
else:
self._wrapped = self._wrap_function(self._func)
return self._wrapped(*args, **kwargs)
def __get__(self, obj, type=None):
self._obj = obj
return self
def _wrap_method(self, method):
@functools.wraps(method)
def inner(self, *args, **kwargs):
print('Method called on {}:'.format(type(self).__name__))
return method(self, *args, **kwargs)
return inner
def _wrap_function(self, function):
@functools.wraps(function)
def inner(*args, **kwargs):
print('Function called:')
return function(*args, **kwargs)
return inner
Example usage:
class Foo(object):
@decorator
def foo(self, foo, bar):
print(foo, bar)
@decorator
def foo(foo, bar):
print(foo, bar)
foo(12, bar=42) # Function called: 12 42
foo(12, 42) # Function called: 12 42
obj = Foo()
obj.foo(12, bar=42) # Method called on Foo: 12 42
obj.foo(12, 42) # Method called on Foo: 12 42