我想有一个二元运算符cross
与Scala中traversables操作(跨产品/笛卡尔乘积):
val x = Seq(1, 2)
val y = List('hello', 'world', 'bye')
val z = x cross y # i can chain as many traversables e.g. x cross y cross w etc
assert z == ((1, 'hello'), (1, 'world'), (1, 'bye'), (2, 'hello'), (2, 'world'), (2, 'bye'))
什么是Scala做到这一点的最好办法只(即不使用类似scalaz)?
Answer 1:
你可以用一个隐含的类和一个做到这一点非常直截了当for
在斯卡拉2.10 -comprehension:
implicit class Crossable[X](xs: Traversable[X]) {
def cross[Y](ys: Traversable[Y]) = for { x <- xs; y <- ys } yield (x, y)
}
val xs = Seq(1, 2)
val ys = List("hello", "world", "bye")
现在:
scala> xs cross ys
res0: Traversable[(Int, String)] = List((1,hello), (1,world), ...
这可能是之前2.10,只是不是很简明,因为你需要同时定义类和隐式转换方法。
你也可以这样写:
scala> xs cross ys cross List('a, 'b)
res2: Traversable[((Int, String), Symbol)] = List(((1,hello),'a), ...
如果你想xs cross ys cross zs
返回一个Tuple3
,但是,您将需要大量的样板或者就像一个图书馆无形 。
Answer 2:
交叉x_list
和y_list
有:
val cross = x_list.flatMap(x => y_list.map(y => (x, y)))
Answer 3:
这里列出的任意数量的递归交叉产品执行:
def crossJoin[T](list: Traversable[Traversable[T]]): Traversable[Traversable[T]] =
list match {
case xs :: Nil => xs map (Traversable(_))
case x :: xs => for {
i <- x
j <- crossJoin(xs)
} yield Traversable(i) ++ j
}
crossJoin(
List(
List(3, "b"),
List(1, 8),
List(0, "f", 4.3)
)
)
res0: Traversable[Traversable[Any]] = List(List(3, 1, 0), List(3, 1, f), List(3, 1, 4.3), List(3, 8, 0), List(3, 8, f), List(3, 8, 4.3), List(b, 1, 0), List(b, 1, f), List(b, 1, 4.3), List(b, 8, 0), List(b, 8, f), List(b, 8, 4.3))
Answer 4:
class CartesianProduct(product: Traversable[Traversable[_ <: Any]]) {
override def toString(): String = {
product.toString
}
def *(rhs: Traversable[_ <: Any]): CartesianProduct = {
val p = product.flatMap { lhs =>
rhs.map { r =>
lhs.toList :+ r
}
}
new CartesianProduct(p)
}
}
object CartesianProduct {
def apply(traversable: Traversable[_ <: Any]): CartesianProduct = {
new CartesianProduct(
traversable.map { t =>
Traversable(t)
}
)
}
}
// TODO: How can this conversion be made implicit?
val x = CartesianProduct(Set(0, 1))
val y = List("Alice", "Bob")
val z = Array(Math.E, Math.PI)
println(x * y * z) // Set(List(0, Alice, 3.141592653589793), List(0, Alice, 2.718281828459045), List(0, Bob, 3.141592653589793), List(1, Alice, 2.718281828459045), List(0, Bob, 2.718281828459045), List(1, Bob, 3.141592653589793), List(1, Alice, 3.141592653589793), List(1, Bob, 2.718281828459045))
// TODO: How can this conversion be made implicit?
val s0 = CartesianProduct(Seq(0, 0))
val s1 = Seq(0, 0)
println(s0 * s1) // List(List(0, 0), List(0, 0), List(0, 0), List(0, 0))
Answer 5:
下面是一些类似于米拉德的回应 ,但非递归。
def cartesianProduct[T](seqs: Seq[Seq[T]]): Seq[Seq[T]] = {
seqs.foldLeft(Seq(Seq.empty[T]))((b, a) => b.flatMap(i => a.map(j => i ++ Seq(j))))
}
基于关闭这个博客帖子 。
Answer 6:
类似于其他的反应,只是我的方法。
def loop(lst: List[List[Int]],acc:List[Int]): List[List[Int]] = {
lst match {
case head :: Nil => head.map(_ :: acc)
case head :: tail => head.flatMap(x => loop(tail,x :: acc))
case Nil => ???
}
}
val l1 = List(10,20,30,40)
val l2 = List(2,4,6)
val l3 = List(3,5,7,9,11)
val lst = List(l1,l2,l3)
loop(lst,List.empty[Int])
文章来源: Cross product in Scala