Summary (tldr)
I need to perform a rolling regression on an irregular time series (i.e. the interval may not even be periodic and go from 0, 1, 2, 3...
to ...7, 20, 24, 28...
) that's simple numeric and does not necessarily require date/time, but the rolling window needs be by time. So if I have a timeseries that is irregularly sampled for 600 seconds and the window is 30, the regression is performed every 30 seconds, and not every 30 samples.
I've read examples, and while I could replicate doing rolling sums and medians by time, I can't seem to figure it out for regression.
The problem
First of all, I have read some of the other questions with regards to performing rolling functions on irregular time series data, such as this: optimized rolling functions on irregular time series with time-based window, and this: Rolling window over irregular time series.
The issue is that the examples provided, so far, are simple for equations like sum
or median
, but I have not yet figured out how to perform a simple rolling regression, i.e. using lm
, that is still based on the same caveat that the window is based on an irregular time series. Also, my timeseries is much, much simpler; no date is necessary, it's simply time "elapsed".
Anyway, getting this right is important to me because with irregular time - for example, a skip in the time interval - may give an over- or underestimate of the coefficients in the rolling regression, as the sample window will include additional time.
So I was wondering if anyone can help me with creating a function that does this in the simplest way? The dataset is based on measuring a variable over time i.e. 2 variables: time, and response. Time is measured every x time elapsed units (seconds, minutes, so not date/time formatted), but once in a while it becomes irregular.
For every row in the function, it should perform a linear regression based on a width of n time units. The width should never exceed n units, but may be floored (i.e. reduced) to accomodate irregular time sampling. So for example, if the width is specified at 20 seconds, but time is sampled every 6 seconds, then the window will be rounded to 18, not 24 seconds.
I have looked at the question here: How to calculate the average slope within a moving window in R, and I tested that code on an irregular time series, but it looks like it's based on regular time series.
Sample data:
sample <-
structure(list(x = c(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48,
49), y = c(50, 49, 48, 47, 46, 47, 46, 45, 44, 43, 44, 43, 42,
41, 40, 41, 40, 39, 38, 37, 38, 37, 36, 35, 34, 35, 34, 33, 32,
31, 30, 29, 28, 29, 28, 27, 26, 25, 26, 25, 24, 23, 22, 21, 20,
19)), .Names = c("x", "y"), class = c("tbl_df", "tbl", "data.frame"
), row.names = c(NA, -46L))
My current code (based on a previous question I referred to). I know it's not subsetting by time:
library(zoo)
clm <- function(z) coef(lm(y ~ x, as.data.frame(z)))
rollme <- rollapplyr(zoo(sample), 10, clm, by.column = F, fill = NA)
The expected output (manually calculated) is below. The output is different from a regular rolling regression -- the numbers are different as soon as the time interval skips at 29 (secs):
NA
NA
NA
NA
NA
NA
NA
NA
NA
-0.696969697
-0.6
-0.551515152
-0.551515152
-0.6
-0.696969697
-0.6
-0.551515152
-0.551515152
-0.6
-0.696969697
-0.6
-0.551515152
-0.551515152
-0.6
-0.696969697
-0.6
-0.551515152
-0.551515152
-0.6
-0.696969697
-0.605042017
-0.638888889
-0.716981132
-0.597560976
-0.528301887
-0.5
-0.521008403
-0.642857143
-0.566666667
-0.551515152
-0.551515152
-0.6
-0.696969697
-0.605042017
-0.638888889
-0.716981132
I hope I'm providing enough information, but let me know (or give me a guide to a good example somewhere) for me to try this?
Other things I have tried: I've tried converting the time to POSIXct format but I don't know how to perform lm on that:
require(lubridate)
x <- as.POSIXct(strptime(sample$x, format = "%S"))
Update : Added tldr section.