I am trying to build out my feature vectors from my csv file which contain about 1000 comments. One of my feature vector is tfidf using scikit learn's tfidf vectorizer. Does it make sense to also use count as a feature vector or is there a better feature vector that i should use?
And if i do end up using both Countvectorizer and tfidfvectorizer as my features, how should i fit them both into my Kmeans model (specifically the km.fit() part)? For now i am only able to fit the tfidf feature vectors into the model.
here is my code:
vectorizer=TfidfVectorizer(min_df=1, max_df=0.9, stop_words='english', decode_error='ignore')
vectorized=vectorizer.fit_transform(sentence_list)
#count_vectorizer=CountVectorizer(min_df=1, max_df=0.9, stop_words='english', decode_error='ignore')
#count_vectorized=count_vectorizerfit_transform(sentence_list)
km=KMeans(n_clusters=num_clusters, init='k-means++',n_init=10, verbose=1)
km.fit(vectorized)