With the goal of turning the following into a function, I was wondering how I can write the following double integral in terms of R codes?: ($\bar{x} = \mu$):
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
回答1:
Assuming pi0
and pi1
implement your functions $\pi_0$ and $\pi_1$ in a vectorized way, a possible solution is:
integral <- function(n, mu, s, pi0, pi1) {
C <- (2 * pi)^(-n/2)
C * integrate(f = function(sigmavec) sapply(sigmavec, function(sigma) {
integrate(f = function(delta) {
exp(-n/2 * ((mu / sigma - delta)^2 + (s / sigma)^2)) * pi1(delta)
}, lower = -Inf, upper = Inf)$value
}) * pi0(sigmavec) / (sigmavec^n), lower = 0, upper = Inf)$value
}
# Tests
integral(n = 1, mu = 0, s = 1, pi0 = dnorm, pi1 = dnorm)
# [1] 0.0473819
integral(n = 1, mu = 0, s = 1, pi0 = function(sigma) 1/sigma, pi1 = dcauchy)
# [1] 0.2615783
回答2:
Note sure if this question is on topic, but I am open to answer.
May be you should ask a more general question, how to write/computing integral using computer program (code)? There at least are two ways
- Using numerical integration, such as Monte Carlo method
- Using symbolic toolbox to solve the problem analytically and plugin the numerical value.
Examples on $\int_0^1 x^2$
f<-function(x){
x^2
}
curve(f,0,1)
# method 1
integrate(f,lower=0,upper = 1)
# method 2
library(Ryacas)
x <- Sym("x")
f <- function(x) {
x^2
}
f2=yacas(yacas(Integrate(f(x), x)))
f2
x <- 1
Eval(f2)