我有问题越来越编译一个非常简单的图形的BFS。 无论我做什么我得到了无与伦比的方法调用各种编译器消息(我试过boost::visitor
和扩展boost::default_bfs_visitor
等)
#include <stdint.h>
#include <iostream>
#include <vector>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/breadth_first_search.hpp>
int main() {
typedef boost::adjacency_list<boost::vecS, boost::hash_setS, boost::undirectedS, uint32_t, uint32_t, boost::no_property> graph_t;
graph_t graph(4);
graph_t::vertex_descriptor a = boost::vertex(0, graph);
graph_t::vertex_descriptor b = boost::vertex(1, graph);
graph_t::vertex_descriptor c = boost::vertex(2, graph);
graph_t::vertex_descriptor d = boost::vertex(3, graph);
graph[a] = 0;
graph[b] = 1;
graph[c] = 2;
graph[d] = 3;
std::pair<graph_t::edge_descriptor, bool> result = boost::add_edge(a, b, 0, graph);
result = boost::add_edge(a, c, 1, graph);
result = boost::add_edge(c, b, 2, graph);
class {
public:
void initialize_vertex(const graph_t::vertex_descriptor &s, graph_t &g) {
std::cout << "Initialize: " << g[s] << std::endl;
}
void discover_vertex(const graph_t::vertex_descriptor &s, graph_t &g) {
std::cout << "Discover: " << g[s] << std::endl;
}
void examine_vertex(const graph_t::vertex_descriptor &s, graph_t &g) {
std::cout << "Examine vertex: " << g[s] << std::endl;
}
void examine_edge(const graph_t::edge_descriptor &e, graph_t &g) {
std::cout << "Examine edge: " << g[e] << std::endl;
}
void tree_edge(const graph_t::edge_descriptor &e, graph_t &g) {
std::cout << "Tree edge: " << g[e] << std::endl;
}
void non_tree_edge(const graph_t::edge_descriptor &e, graph_t &g) {
std::cout << "Non-Tree edge: " << g[e] << std::endl;
}
void gray_target(const graph_t::edge_descriptor &e, graph_t &g) {
std::cout << "Gray target: " << g[e] << std::endl;
}
void black_target(const graph_t::edge_descriptor &e, graph_t &g) {
std::cout << "Black target: " << g[e] << std::endl;
}
void finish_vertex(const graph_t::vertex_descriptor &s, graph_t &g) {
std::cout << "Finish vertex: " << g[s] << std::endl;
}
} bfs_visitor;
boost::breadth_first_search(graph, a, bfs_visitor);
return 0;
}
如何使用访问图形bfs_visitor
?
PS。 我见过并汇编“如何创建一个C ++升压无向图和深度优先搜索(DFS)为了穿越了吗?” 但它并没有帮助。
你可以看到这里的重载列表breadth_first_search
。 如果你不想指定参数的每一个你需要使用命名参数版本。 它是这样的:
breadth_first_search(graph, a, boost::visitor(bfs_visitor));
这上班是,如果你使用过vecS
作为VertexList时,存储在您的图形清晰度,或者如果你已经建造并初始化一个内部的vertex_index属性映射。 由于您使用hash_setS
您需要更改调用到:
breath_first_search(graph, a, boost::visitor(bfs_visitor).vertex_index_map(my_index_map));
您已经使用您的uint32_t的捆绑性的指标图。 您可以使用get(boost::vertex_bundle, graph)
来访问它。
还有您的访问者问题。 你应该得到它boost::default_bfs_visitor
和graph_t
你的成员函数参数需要被const修饰。
全码:
#include <stdint.h>
#include <iostream>
#include <vector>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/breadth_first_search.hpp>
typedef boost::adjacency_list<boost::vecS, boost::hash_setS, boost::undirectedS, uint32_t, uint32_t, boost::no_property> graph_t;
struct my_visitor : boost::default_bfs_visitor{
void initialize_vertex(const graph_t::vertex_descriptor &s, const graph_t &g) const {
std::cout << "Initialize: " << g[s] << std::endl;
}
void discover_vertex(const graph_t::vertex_descriptor &s, const graph_t &g) const {
std::cout << "Discover: " << g[s] << std::endl;
}
void examine_vertex(const graph_t::vertex_descriptor &s, const graph_t &g) const {
std::cout << "Examine vertex: " << g[s] << std::endl;
}
void examine_edge(const graph_t::edge_descriptor &e, const graph_t &g) const {
std::cout << "Examine edge: " << g[e] << std::endl;
}
void tree_edge(const graph_t::edge_descriptor &e, const graph_t &g) const {
std::cout << "Tree edge: " << g[e] << std::endl;
}
void non_tree_edge(const graph_t::edge_descriptor &e, const graph_t &g) const {
std::cout << "Non-Tree edge: " << g[e] << std::endl;
}
void gray_target(const graph_t::edge_descriptor &e, const graph_t &g) const {
std::cout << "Gray target: " << g[e] << std::endl;
}
void black_target(const graph_t::edge_descriptor &e, const graph_t &g) const {
std::cout << "Black target: " << g[e] << std::endl;
}
void finish_vertex(const graph_t::vertex_descriptor &s, const graph_t &g) const {
std::cout << "Finish vertex: " << g[s] << std::endl;
}
};
int main() {
graph_t graph(4);
graph_t::vertex_descriptor a = boost::vertex(0, graph);
graph_t::vertex_descriptor b = boost::vertex(1, graph);
graph_t::vertex_descriptor c = boost::vertex(2, graph);
graph_t::vertex_descriptor d = boost::vertex(3, graph);
graph[a] = 0;
graph[b] = 1;
graph[c] = 2;
graph[d] = 3;
std::pair<graph_t::edge_descriptor, bool> result = boost::add_edge(a, b, 0, graph);
result = boost::add_edge(a, c, 1, graph);
result = boost::add_edge(c, b, 2, graph);
my_visitor vis;
breadth_first_search(graph, a, boost::visitor(vis).vertex_index_map(get(boost::vertex_bundle,graph)));
return 0;
}
我面临着同样的问题,但相比于user1252091我的顶点类型提供的答案是,不包括可用于创建vertex_index_map整数的结构,因此行
breadth_first_search(graph, a, boost::visitor(vis).vertex_index_map(get(boost::vertex_bundle,graph)));
不会在我的情况下工作。 最后我想出如何(也得益于创建外部vertex_index_map 这个答案 ),并把它传递给breadth_first_search功能。 这里是一个的情况下工作例如,它可以帮助别人:
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/visitors.hpp>
#include <boost/graph/breadth_first_search.hpp>
#include <iostream>
struct Person
{
std::string Name;
unsigned int YearBorn;
};
typedef boost::adjacency_list <boost::vecS, boost::hash_setS, boost::bidirectionalS, Person, boost::no_property > FamilyTree;
typedef boost::graph_traits<FamilyTree>::vertex_descriptor Vertex;
typedef boost::graph_traits<FamilyTree>::edge_descriptor Edge;
template <class Graph>
class BfsVisitor : public boost::default_bfs_visitor
{
public:
typedef typename boost::graph_traits<Graph>::vertex_descriptor VertexDescriptor;
typedef typename boost::graph_traits<Graph>::edge_descriptor EdgeDescriptor;
BfsVisitor(std::vector<VertexDescriptor>& nodesVisited)
: m_nodesVisited(nodesVisited){}
void tree_edge(EdgeDescriptor e, const Graph& g) const
{
VertexDescriptor u = source(e, g);
VertexDescriptor v = target(e, g);
m_nodesVisited.push_back(v);
}
private:
std::vector<VertexDescriptor>& m_nodesVisited;
};
const Person Abe_Simpson {"Abe_Simpson", 0};
const Person Mona_Simpson { "Mona_Simpson", 0};
const Person Herb_Simpson { "Herb_Simpson", 0};
const Person Homer_Simpson { "Homer_Simpson", 0};
const Person Clancy_Bouvier { "Clancy_Bouvier", 0};
const Person Jacqueline_Bouvier { "Jacqueline_Bouvier", 0};
const Person Marge_Bouvier { "Marge_Bouvier", 0};
const Person Patty_Bouvier { "Patty_Bouvier", 0};
const Person Selma_Bouvier { "Selma_Bouvier", 0};
const Person Bart_Simpson { "Bart_Simpson", 0};
const Person Lisa_Simpson { "Lisa_Simpson", 0};
const Person Maggie_Simpson { "Maggie_Simpson", 0};
const Person Ling_Bouvier { "Ling_Bouvier", 0};
int main(void)
{
std::cout << __FUNCTION__ << "\n";
FamilyTree g;
// nodes
auto v_Abe_Simpson = boost::add_vertex(Abe_Simpson,g);
auto v_Mona_Simpson = boost::add_vertex(Mona_Simpson,g);
auto v_Herb_Simpson = boost::add_vertex(Herb_Simpson,g);
auto v_Homer_Simpson = boost::add_vertex(Homer_Simpson,g);
auto v_Clancy_Bouvier = boost::add_vertex(Clancy_Bouvier,g);
auto v_Jacqueline_Bouvier = boost::add_vertex(Jacqueline_Bouvier,g);
auto v_Marge_Bouvier = boost::add_vertex(Marge_Bouvier,g);
auto v_Patty_Bouvier = boost::add_vertex(Patty_Bouvier,g);
auto v_Selma_Bouvier = boost::add_vertex(Selma_Bouvier,g);
auto v_Bart_Simpson = boost::add_vertex(Bart_Simpson,g);
auto v_Lisa_Simpson = boost::add_vertex(Lisa_Simpson,g);
auto v_Maggie_Simpson = boost::add_vertex(Maggie_Simpson,g);
auto v_Ling_Bouvier = boost::add_vertex(Ling_Bouvier,g);
// connections
boost::add_edge(v_Abe_Simpson, v_Herb_Simpson, g);
boost::add_edge(v_Abe_Simpson, v_Homer_Simpson, g);
boost::add_edge(v_Mona_Simpson, v_Herb_Simpson, g);
boost::add_edge(v_Mona_Simpson, v_Homer_Simpson, g);
boost::add_edge(v_Clancy_Bouvier, v_Marge_Bouvier, g);
boost::add_edge(v_Clancy_Bouvier, v_Patty_Bouvier, g);
boost::add_edge(v_Clancy_Bouvier, v_Selma_Bouvier, g);
boost::add_edge(v_Jacqueline_Bouvier, v_Marge_Bouvier, g);
boost::add_edge(v_Jacqueline_Bouvier, v_Patty_Bouvier, g);
boost::add_edge(v_Jacqueline_Bouvier, v_Selma_Bouvier, g);
boost::add_edge(v_Homer_Simpson, v_Bart_Simpson, g);
boost::add_edge(v_Homer_Simpson, v_Lisa_Simpson, g);
boost::add_edge(v_Homer_Simpson, v_Maggie_Simpson, g);
boost::add_edge(v_Marge_Bouvier, v_Bart_Simpson, g);
boost::add_edge(v_Marge_Bouvier, v_Lisa_Simpson, g);
boost::add_edge(v_Marge_Bouvier, v_Maggie_Simpson, g);
boost::add_edge(v_Selma_Bouvier, v_Ling_Bouvier, g);
typedef std::map<Vertex, size_t>IndexMap;
IndexMap mapIndex;
boost::associative_property_map<IndexMap> propmapIndex(mapIndex);
size_t i=0;
FamilyTree::vertex_iterator vi, vi_end;
for (boost::tie(vi, vi_end) = boost::vertices(g); vi != vi_end; ++vi)
{
boost::put(propmapIndex, *vi, i++);
}
for (boost::tie(vi, vi_end) = boost::vertices(g); vi != vi_end; ++vi)
{
Vertex vParent = *vi;
std::vector<Vertex> vertexDescriptors;
BfsVisitor<FamilyTree> bfsVisitor(vertexDescriptors);
breadth_first_search(g, vParent, visitor(bfsVisitor).vertex_index_map(propmapIndex));
std::cout << "\nDecendants of " << g[vParent].Name << ":\n";
for (auto v : vertexDescriptors)
{
Person p = g[v];
std::cout << p.Name << "\n";
}
}
getchar();
return 0;
}