如何找到的两个位置的经度和纬度的距​​离?(How to find distance from th

2019-07-17 22:34发布

我有一组纬度和经度位置的。

  • 如何找到在集合到另一个从一个位置的距离
  • 是否有一个公式?

Answer 1:

haversine公式假定球形地球。 然而,earh的形状比较复杂。 扁球体模型将给出更好的结果。

如果需要这样的精确度,你应该更好地利用Vincenty逆公式 。 见http://en.wikipedia.org/wiki/Vincenty's_formulae了解详情。 使用它,你可以得到的球体模型0.5mm的精度。

世上没有完美的公式 ,因为地球的真实形状太复杂,用公式来表示。 此外,由于气候事件(见地球的形状变化http://www.nasa.gov/centers/goddard/earthandsun/earthshape.html ),并随时间变化,由于地球的自转。

还应注意的是,上述方法没有考虑高度考虑,并假定海平面扁球体。

编辑10 - 07月2010:我发现有针对Vincenty反式不收敛于声明的准确性罕见的情况。 更好的方法是使用GeographicLib(见http://sourceforge.net/projects/geographiclib/ ),这也更准确。



Answer 2:

这里有一个: http://www.movable-type.co.uk/scripts/latlong.html

使用haversine公式:

R = earth’s radius (mean radius = 6,371km)
Δlat = lat2− lat1
Δlong = long2− long1
a = sin²(Δlat/2) + cos(lat1).cos(lat2).sin²(Δlong/2)
c = 2.atan2(√a, √(1−a))
d = R.c 


Answer 3:

应用haversine公式找到的距离。 请参阅下面的C#代码找到2个坐标之间的距离。 更妙的是,如果你想说查找某一半径范围内商店的列表,你可以申请一个WHERE的SQL C#中的LINQ过滤器,它条款或。

这里的公式是公里,你将不得不更改相关的数字,它会哩工作。

如: 转换6371.392896为英里。

    DECLARE @radiusInKm AS FLOAT
    DECLARE @lat2Compare AS FLOAT
    DECLARE @long2Compare AS FLOAT
    SET @radiusInKm = 5.000
    SET @lat2Compare = insert_your_lat_to_compare_here
    SET @long2Compare = insert_you_long_to_compare_here

    SELECT * FROM insert_your_table_here WITH(NOLOCK)
    WHERE (6371.392896*2*ATN2(SQRT((sin((radians(GeoLatitude - @lat2Compare)) / 2) * sin((radians(GeoLatitude - @lat2Compare)) / 2)) + (cos(radians(GeoLatitude)) * cos(radians(@lat2Compare)) * sin(radians(GeoLongitude - @long2Compare)/2) * sin(radians(GeoLongitude - @long2Compare)/2)))
    , SQRT(1-((sin((radians(GeoLatitude - @lat2Compare)) / 2) * sin((radians(GeoLatitude - @lat2Compare)) / 2)) + (cos(radians(GeoLatitude)) * cos(radians(@lat2Compare)) * sin(radians(GeoLongitude - @long2Compare)/2) * sin(radians(GeoLongitude - @long2Compare)/2)))
    ))) <= @radiusInKm

如果你想在C#中执行haversine公式,

    double resultDistance = 0.0;
    double avgRadiusOfEarth = 6371.392896; //Radius of the earth differ, I'm taking the average.

    //Haversine formula
    //distance = R * 2 * aTan2 ( square root of A, square root of 1 - A )
    //                   where A = sinus squared (difference in latitude / 2) + (cosine of latitude 1 * cosine of latitude 2 * sinus squared (difference in longitude / 2))
    //                   and R = the circumference of the earth

    double differenceInLat = DegreeToRadian(currentLatitude - latitudeToCompare);
    double differenceInLong = DegreeToRadian(currentLongitude - longtitudeToCompare);
    double aInnerFormula = Math.Cos(DegreeToRadian(currentLatitude)) * Math.Cos(DegreeToRadian(latitudeToCompare)) * Math.Sin(differenceInLong / 2) * Math.Sin(differenceInLong / 2);
    double aFormula = (Math.Sin((differenceInLat) / 2) * Math.Sin((differenceInLat) / 2)) + (aInnerFormula);
    resultDistance = avgRadiusOfEarth * 2 * Math.Atan2(Math.Sqrt(aFormula), Math.Sqrt(1 - aFormula));

DegreesToRadian是我自定义创建的一个函数,其是简单的1个衬垫的"Math.PI * angle / 180.0

我的博客文章- SQL半正矢



Answer 4:

您是否正在寻找

haversine公式

haversine公式是一个等式中的导航重要的是,从他们的经度和纬度球体两点之间给大圆距离。 它是在球面三角学更一般的公式,haversines有关的球形“三角形”的边和角法的一个特例。



Answer 5:

看看这个..有一个JavaScript的例子也是如此。

查找距离



Answer 6:

使用大圆距离公式 。



Answer 7:

此链接有你需要的,无论是在它或链接的所有信息。



Answer 8:

这里是查找位置/给出IP地点附近长/ LAT提琴:

http://jsfiddle.net/bassta/zrgd9qc3/2/

这里是我使用来计算直线距离的函数:

function distance(lat1, lng1, lat2, lng2) {
        var radlat1 = Math.PI * lat1 / 180;
        var radlat2 = Math.PI * lat2 / 180;
        var radlon1 = Math.PI * lng1 / 180;
        var radlon2 = Math.PI * lng2 / 180;
        var theta = lng1 - lng2;
        var radtheta = Math.PI * theta / 180;
        var dist = Math.sin(radlat1) * Math.sin(radlat2) + Math.cos(radlat1) * Math.cos(radlat2) * Math.cos(radtheta);
        dist = Math.acos(dist);
        dist = dist * 180 / Math.PI;
        dist = dist * 60 * 1.1515;

        //Get in in kilometers
        dist = dist * 1.609344;

        return dist;
    }

它返回公里的距离



Answer 9:

如果要测量的距离小于(也许)1度经/纬度变化,正在寻找一个非常高的性能近似 ,并且愿意接受比haversine公式更不准确 ,请考虑以下两种选择:

(1)“极坐标平地面式”,从计算距离 :

a = pi/2 - lat1  
b = pi/2 - lat2  
c = sqrt( a^2 + b^2 - 2 * a * b * cos(lon2 - lon1) )   
d = R * c

(2)勾股定理调整纬度 ,所看到的伊万·托德的SO职位 :

d_ew = (long1 - long0) * cos(average(lat0, lat1))  
d_ns = (lat1 - lat0)  
d = sqrt(d_ew * d_ew + d_ns * d_ns)  

笔记:
相比于伊万的帖子,我已经取代average(lat0, lat1)用于lat0cos( lat0 )

#2是对值是否度,弧度或公里模糊; 你会需要一些转换代码。 见我的完整代码在这篇文章的底部。

#1被设计成甚至接近极点很好地工作,但如果你正在测量其端点上杆(经度超过90度的有什么不同?)的“对立”双方的距离,半正矢建议相反,即使是小的距离。

我还没有彻底地测量这些方法的错误,所以你应该采取代表分,你的应用程序,并比较结果到一些高品质的图书馆,以决定是否准确度是可以接受的。 超过几公里的距离,少我内心的感觉是,这些都是正确的测量的1%以内。


另一种方式来获得高性能(如果适用):

如果你有一个大组点,一个或两个经度/纬度,你将被从一个小数量的动态的计算距离(移动)值范围内,考虑ONCE转换你的静态指向包含UTM区(或任何其他地方笛卡尔坐标系),然后做在笛卡尔所有你的数学坐标系。
笛卡尔=地平=勾股定理适用,所以distance = sqrt(dx^2 + dy^2)

然后精确地转换该很少的移动指向UTM成本容易得到。


CAVEAT#1(极地):可能是非常错误的距离小于0.1米(?)。 即使双精度算术,以下坐标,其实际距离为0.005米,给出“零”,由我实施极地算法:

输入:

    lon1Xdeg    16.6564465477996    double
    lat1Ydeg    57.7760262271983    double
    lon2Xdeg    16.6564466358281    double
    lat2Ydeg    57.776026248554 double

结果:

Oblate spheroid formula:  
    0.00575254911118364 double
Haversine:
    0.00573422966122257 double
Polar:
    0

这是由于两个因素uv正好相互抵消:

    u   0.632619944868587   double
    v   -0.632619944868587  double

在另一种情况下,它给的距离0.067129 m当扁圆球体答案是0.002887 m 。 问题是, cos(lon2 - lon1)太接近1 ,因此cos函数返回恰好1

除了测量子米的距离,最大误差(相对于扁球体公式)我发现我在到目前为止送入的有限的小距离数据:

    maxHaversineErrorRatio  0.00350976281908381 double
    maxPolarErrorRatio  0.0510789996931342  double

其中,“1”将表示在应答一个100%的误差; 例如,当它返回“0”,即是“1”的错误(排除从上面“maxPolar”)。 因此,“0.01”将是“100 1份”或1%的误差。

极地误差半正弦波误差过少的距离在2000米比较,看看这个简单的公式多么糟糕的是。 到目前为止,我见过最差的是51分之1000极地VS 4分之1000半正弦波。 在大约58度的纬度。


现在实行“毕达哥拉斯与纬度调整”。

这是远远超过极地的距离<2000米一致。
我本来以为极地问题是1米只有当<,
但正下方所示的结果是相当令人担忧。

随着距离接近零,毕达哥拉斯/纬度接近半正矢。 例如该测量〜217米:

    lon1Xdeg    16.6531667510102    double
    lat1Ydeg    57.7751705615804    double
    lon2Xdeg    16.6564468739869    double
    lat2Ydeg    57.7760263007586    double

    oblate      217.201200413731
    haversine   216.518428601051
    polar       226.128616011973
    pythag-cos  216.518428631907
    havErrRatio 0.00314349925958048
    polErrRatio 0.041102054598393
    pycErrRatio 0.00314349911751603

极地与这些输入的更糟糕的错误; 无论是有我的代码中的一些错误,或者在COS功能我运行,或者我要推荐不使用极地,即使最极地测量结果比这更接近。

OTOH,毕达哥拉斯,即使* cos(latitude)的调整,具有误差比距离(对于更大的距离max_error /距离的增加比率)增加得更快,所以需要仔细考虑将测量的最大距离,并在可接受的误差。 此外,它是不可取的比较使用勾股定理两个几乎相等的距离,来决定其是较短的,因为错误是在不同方向上不同的(未示出证据)。

最坏的情况下测量, errorRatio = Abs(error) / distance (瑞典;高达2000米):

    t_maxHaversineErrorRatio    0.00351012021578681 double
    t_maxPolarErrorRatio        66.0825360597085    double
    t_maxPythagoreanErrorRatio  0.00350976281416454 double

如之前所提到的,极端极性错误是用于子米的距离,在那里它可以报告的零代替6厘米,或报告超过0.5 m表示1cm的距离(因此,“66×”最差t_maxPolarErrorRatio所示的情况),但也有在更大距离的一些不好的结果。 [需要与该已知是高度精确的余弦函数再次测试。]

在C#代码在一个摩托E4运行Xamarin.Android进行测量。


C#代码:

    // x=longitude, y= latitude. oblate spheroid formula. TODO: From where?
    public static double calculateDistanceDD_AED( double lon1Xdeg, double lat1Ydeg, double lon2Xdeg, double lat2Ydeg )
    {
        double c_dblEarthRadius = 6378.135; // km
        double c_dblFlattening = 1.0 / 298.257223563; // WGS84 inverse
                                                      // flattening
        // Q: Why "-" for longitudes??
        double p1x = -degreesToRadians( lon1Xdeg );
        double p1y = degreesToRadians( lat1Ydeg );
        double p2x = -degreesToRadians( lon2Xdeg );
        double p2y = degreesToRadians( lat2Ydeg );

        double F = (p1y + p2y) / 2;
        double G = (p1y - p2y) / 2;
        double L = (p1x - p2x) / 2;

        double sing = Math.Sin( G );
        double cosl = Math.Cos( L );
        double cosf = Math.Cos( F );
        double sinl = Math.Sin( L );
        double sinf = Math.Sin( F );
        double cosg = Math.Cos( G );

        double S = sing * sing * cosl * cosl + cosf * cosf * sinl * sinl;
        double C = cosg * cosg * cosl * cosl + sinf * sinf * sinl * sinl;
        double W = Math.Atan2( Math.Sqrt( S ), Math.Sqrt( C ) );
        if (W == 0.0)
            return 0.0;

        double R = Math.Sqrt( (S * C) ) / W;
        double H1 = (3 * R - 1.0) / (2.0 * C);
        double H2 = (3 * R + 1.0) / (2.0 * S);
        double D = 2 * W * c_dblEarthRadius;

        // Apply flattening factor
        D = D * (1.0 + c_dblFlattening * H1 * sinf * sinf * cosg * cosg - c_dblFlattening * H2 * cosf * cosf * sing * sing);

        // Transform to meters
        D = D * 1000.0;

        // tmstest
        if (true)
        {
            // Compare Haversine.
            double haversine = HaversineApproxDistanceGeo( lon1Xdeg, lat1Ydeg, lon2Xdeg, lat2Ydeg );
            double error = haversine - D;
            double absError = Math.Abs( error );
            double errorRatio = absError / D;
            if (errorRatio > t_maxHaversineErrorRatio)
            {
                if (errorRatio > t_maxHaversineErrorRatio * 1.1)
                    Helper.test();
                t_maxHaversineErrorRatio = errorRatio;
            }

            // Compare Polar Coordinate Flat Earth. 
            double polarDistanceGeo = ApproxDistanceGeo_Polar( lon1Xdeg, lat1Ydeg, lon2Xdeg, lat2Ydeg, D );
            double error2 = polarDistanceGeo - D;
            double absError2 = Math.Abs( error2 );
            double errorRatio2 = absError2 / D;
            if (errorRatio2 > t_maxPolarErrorRatio)
            {
                if (polarDistanceGeo > 0)
                {
                    if (errorRatio2 > t_maxPolarErrorRatio * 1.1)
                        Helper.test();
                    t_maxPolarErrorRatio = errorRatio2;
                }
                else
                    Helper.dubious();
            }

            // Compare Pythagorean Theorem with Latitude Adjustment. 
            double pythagoreanDistanceGeo = ApproxDistanceGeo_PythagoreanCosLatitude( lon1Xdeg, lat1Ydeg, lon2Xdeg, lat2Ydeg, D );
            double error3 = pythagoreanDistanceGeo - D;
            double absError3 = Math.Abs( error3 );
            double errorRatio3 = absError3 / D;
            if (errorRatio3 > t_maxPythagoreanErrorRatio)
            {
                if (D < 2000)
                {
                    if (errorRatio3 > t_maxPythagoreanErrorRatio * 1.05)
                        Helper.test();
                    t_maxPythagoreanErrorRatio = errorRatio3;
                }
            }
        }


        return D;
    }

    // As a fraction of the distance.
    private static double t_maxHaversineErrorRatio, t_maxPolarErrorRatio, t_maxPythagoreanErrorRatio;


    // Average of equatorial and polar radii (meters).
    public const double EarthAvgRadius = 6371000;
    public const double EarthAvgCircumference = EarthAvgRadius * 2 * PI;
    // CAUTION: This is an average of great circles; won't be the actual distance of any longitude or latitude degree.
    public const double EarthAvgMeterPerGreatCircleDegree = EarthAvgCircumference / 360;

    // Haversine formula (assumes Earth is sphere).
    // "deg" = degrees.
    // Perhaps based on Haversine Formula in https://cs.nyu.edu/visual/home/proj/tiger/gisfaq.html
    public static double HaversineApproxDistanceGeo(double lon1Xdeg, double lat1Ydeg, double lon2Xdeg, double lat2Ydeg)
    {
        double lon1 = degreesToRadians( lon1Xdeg );
        double lat1 = degreesToRadians( lat1Ydeg );
        double lon2 = degreesToRadians( lon2Xdeg );
        double lat2 = degreesToRadians( lat2Ydeg );

        double dlon = lon2 - lon1;
        double dlat = lat2 - lat1;
        double sinDLat2 = Sin( dlat / 2 );
        double sinDLon2 = Sin( dlon / 2 );
        double a = sinDLat2 * sinDLat2 + Cos( lat1 ) * Cos( lat2 ) * sinDLon2 * sinDLon2;
        double c = 2 * Atan2( Sqrt( a ), Sqrt( 1 - a ) );
        double d = EarthAvgRadius * c;
        return d;
    }

    // From https://stackoverflow.com/a/19772119/199364
    // Based on Polar Coordinate Flat Earth in https://cs.nyu.edu/visual/home/proj/tiger/gisfaq.html
    public static double ApproxDistanceGeo_Polar( double lon1deg, double lat1deg, double lon2deg, double lat2deg, double D = 0 )
    {
        double approxUnitDistSq = ApproxUnitDistSq_Polar(lon1deg, lat1deg, lon2deg, lat2deg, D);
        double c = Sqrt( approxUnitDistSq );
        return EarthAvgRadius * c;
    }

    // Might be useful to avoid taking Sqrt, when comparing to some threshold.
    // Threshold would have to be adjusted to match:  Power(threshold / EarthAvgRadius, 2)
    private static double ApproxUnitDistSq_Polar(double lon1deg, double lat1deg, double lon2deg, double lat2deg, double D = 0 )
    {
        const double HalfPi = PI / 2; //1.5707963267949;

        double lon1 = degreesToRadians(lon1deg);
        double lat1 = degreesToRadians(lat1deg);
        double lon2 = degreesToRadians(lon2deg);
        double lat2 = degreesToRadians(lat2deg);

        double a = HalfPi - lat1;
        double b = HalfPi - lat2;
        double u = a * a + b * b;
        double dlon21 = lon2 - lon1;
        double cosDeltaLon = Cos( dlon21 );
        double v = -2 * a * b * cosDeltaLon;
        // TBD: Is "Abs" necessary?  That is, is "u + v" ever negative?
        //   (I think not; "v" looks like a secondary term. Though might be round-off issue near zero when a~=b.)
        double approxUnitDistSq = Abs(u + v);

        //if (approxUnitDistSq.nearlyEquals(0, 1E-16))
        //  Helper.dubious();
        //else if (D > 0)
        //{
        //  double dba = b - a;
        //  double unitD = D / EarthAvgRadius;
        //  double unitDSq = unitD * unitD;
        //  if (approxUnitDistSq > 2 * unitDSq)
        //      Helper.dubious();
        //  else if (approxUnitDistSq * 2 < unitDSq)
        //      Helper.dubious();
        //}

        return approxUnitDistSq;
    }

    // Pythagorean Theorem with Latitude Adjustment - from Ewan Todd - https://stackoverflow.com/a/1664836/199364
    // Refined by ToolmakerSteve - https://stackoverflow.com/a/53468745/199364
    public static double ApproxDistanceGeo_PythagoreanCosLatitude( double lon1deg, double lat1deg, double lon2deg, double lat2deg, double D = 0 )
    {
        double approxDegreesSq = ApproxDegreesSq_PythagoreanCosLatitude( lon1deg, lat1deg, lon2deg, lat2deg );
        // approximate degrees on the great circle between the points.
        double d_degrees = Sqrt( approxDegreesSq );
        return d_degrees * EarthAvgMeterPerGreatCircleDegree;
    }

    public static double ApproxDegreesSq_PythagoreanCosLatitude( double lon1deg, double lat1deg, double lon2deg, double lat2deg )
    {
        double avgLatDeg = average( lat1deg , lat2deg );
        double avgLat = degreesToRadians( avgLatDeg );

        double d_ew = (lon2deg - lon1deg) * Cos( avgLat );
        double d_ns = (lat2deg - lat1deg);
        double approxDegreesSq = d_ew * d_ew + d_ns * d_ns;
        return approxDegreesSq;
    }


Answer 10:

我使用SQL查询完成

select *, (acos(sin(input_lat* 0.01745329)*sin(lattitude *0.01745329) + cos(input_lat *0.01745329)*cos(lattitude *0.01745329)*cos((input_long -longitude)*0.01745329))* 57.29577951 )* 69.16 As D  from table_name 


Answer 11:

以下是包含在以前的答案讨论三个公式的模块(F90编码的)。 您可以把这个模块在你的程序(程序主前)的顶部或单独编译它,包括在编译过程中的模块目录。 下面的模块包含三个公式。 前两种是基于这样的假设地球是球形的大圆距离。

module spherical_dists

contains

subroutine great_circle_distance(lon1,lat1,lon2,lat2,dist)
  !https://en.wikipedia.org/wiki/Great-circle_distance
  ! It takes lon, lats of two points on an assumed spherical earth and
  ! calculates the distance between them along the great circle connecting the two points
  implicit none
  real,intent(in)::lon1,lon2,lat1,lat2
  real,intent(out)::dist
  real,parameter::pi=3.141592,mean_earth_radius=6371.0088
  real::lonr1,lonr2,latr1,latr2
  real::delangl,dellon
  lonr1=lon1*(pi/180.);lonr2=lon2*(pi/180.)
  latr1=lat1*(pi/180.);latr2=lat2*(pi/180.)
  dellon=lonr2-lonr1
  delangl=acos(sin(latr1)*sin(latr2)+cos(latr1)*cos(latr2)*cos(dellon))
  dist=delangl*mean_earth_radius
end subroutine

subroutine haversine_formula(lon1,lat1,lon2,lat2,dist)
  ! https://en.wikipedia.org/wiki/Haversine_formula
  ! This is similar above but numerically better conditioned for small distances
  implicit none
  real,intent(in)::lon1,lon2,lat1,lat2
  !lon, lats of two points
  real,intent(out)::dist
  real,parameter::pi=3.141592,mean_earth_radius=6371.0088
  real::lonr1,lonr2,latr1,latr2
  real::delangl,dellon,dellat,a
  ! degrees are converted to radians
  lonr1=lon1*(pi/180.);lonr2=lon2*(pi/180.)
  latr1=lat1*(pi/180.);latr2=lat2*(pi/180.)
  dellon=lonr2-lonr1 ! These dels simplify the haversine formula
  dellat=latr2-latr1
  ! The actual haversine formula
  a=(sin(dellat/2))**2+cos(latr1)*cos(latr2)*(sin(dellon/2))**2
  delangl=2*asin(sqrt(a)) !2*asin(sqrt(a))
  dist=delangl*mean_earth_radius
end subroutine  

subroutine vincenty_formula(lon1,lat1,lon2,lat2,dist)
  !https://en.wikipedia.org/wiki/Vincenty%27s_formulae
  !It's a better approximation over previous two, since it considers earth to in oblate spheroid, which better approximates the shape of the earth
  implicit none
  real,intent(in)::lon1,lon2,lat1,lat2
  real,intent(out)::dist
  real,parameter::pi=3.141592,mean_earth_radius=6371.0088
  real::lonr1,lonr2,latr1,latr2
  real::delangl,dellon,nom,denom
  lonr1=lon1*(pi/180.);lonr2=lon2*(pi/180.)
  latr1=lat1*(pi/180.);latr2=lat2*(pi/180.)
  dellon=lonr2-lonr1
  nom=sqrt((cos(latr2)*sin(dellon))**2. + (cos(latr1)*sin(latr2)-sin(latr1)*cos(latr2)*cos(dellon))**2.)
  denom=sin(latr1)*sin(latr2)+cos(latr1)*cos(latr2)*cos(dellon)
  delangl=atan2(nom,denom)
  dist=delangl*mean_earth_radius
end subroutine

end module


Answer 12:

在这个页面上,你可以看到整个代码和公式怎样的位置距离在Android的位置类计算

安卓/位置/ Location.java

编辑 :根据从@Richard我把挂钩函数的代码到我的答案提示,避免无效的链接:

private static void computeDistanceAndBearing(double lat1, double lon1,
    double lat2, double lon2, BearingDistanceCache results) {
    // Based on http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
    // using the "Inverse Formula" (section 4)
    int MAXITERS = 20;
    // Convert lat/long to radians
    lat1 *= Math.PI / 180.0;
    lat2 *= Math.PI / 180.0;
    lon1 *= Math.PI / 180.0;
    lon2 *= Math.PI / 180.0;
    double a = 6378137.0; // WGS84 major axis
    double b = 6356752.3142; // WGS84 semi-major axis
    double f = (a - b) / a;
    double aSqMinusBSqOverBSq = (a * a - b * b) / (b * b);
    double L = lon2 - lon1;
    double A = 0.0;
    double U1 = Math.atan((1.0 - f) * Math.tan(lat1));
    double U2 = Math.atan((1.0 - f) * Math.tan(lat2));
    double cosU1 = Math.cos(U1);
    double cosU2 = Math.cos(U2);
    double sinU1 = Math.sin(U1);
    double sinU2 = Math.sin(U2);
    double cosU1cosU2 = cosU1 * cosU2;
    double sinU1sinU2 = sinU1 * sinU2;
    double sigma = 0.0;
    double deltaSigma = 0.0;
    double cosSqAlpha = 0.0;
    double cos2SM = 0.0;
    double cosSigma = 0.0;
    double sinSigma = 0.0;
    double cosLambda = 0.0;
    double sinLambda = 0.0;
    double lambda = L; // initial guess
    for (int iter = 0; iter < MAXITERS; iter++) {
        double lambdaOrig = lambda;
        cosLambda = Math.cos(lambda);
        sinLambda = Math.sin(lambda);
        double t1 = cosU2 * sinLambda;
        double t2 = cosU1 * sinU2 - sinU1 * cosU2 * cosLambda;
        double sinSqSigma = t1 * t1 + t2 * t2; // (14)
        sinSigma = Math.sqrt(sinSqSigma);
        cosSigma = sinU1sinU2 + cosU1cosU2 * cosLambda; // (15)
        sigma = Math.atan2(sinSigma, cosSigma); // (16)
        double sinAlpha = (sinSigma == 0) ? 0.0 :
            cosU1cosU2 * sinLambda / sinSigma; // (17)
        cosSqAlpha = 1.0 - sinAlpha * sinAlpha;
        cos2SM = (cosSqAlpha == 0) ? 0.0 :
            cosSigma - 2.0 * sinU1sinU2 / cosSqAlpha; // (18)
        double uSquared = cosSqAlpha * aSqMinusBSqOverBSq; // defn
        A = 1 + (uSquared / 16384.0) * // (3)
            (4096.0 + uSquared *
             (-768 + uSquared * (320.0 - 175.0 * uSquared)));
        double B = (uSquared / 1024.0) * // (4)
            (256.0 + uSquared *
             (-128.0 + uSquared * (74.0 - 47.0 * uSquared)));
        double C = (f / 16.0) *
            cosSqAlpha *
            (4.0 + f * (4.0 - 3.0 * cosSqAlpha)); // (10)
        double cos2SMSq = cos2SM * cos2SM;
        deltaSigma = B * sinSigma * // (6)
            (cos2SM + (B / 4.0) *
             (cosSigma * (-1.0 + 2.0 * cos2SMSq) -
              (B / 6.0) * cos2SM *
              (-3.0 + 4.0 * sinSigma * sinSigma) *
              (-3.0 + 4.0 * cos2SMSq)));
        lambda = L +
            (1.0 - C) * f * sinAlpha *
            (sigma + C * sinSigma *
             (cos2SM + C * cosSigma *
              (-1.0 + 2.0 * cos2SM * cos2SM))); // (11)
        double delta = (lambda - lambdaOrig) / lambda;
        if (Math.abs(delta) < 1.0e-12) {
            break;
        }
    }
    float distance = (float) (b * A * (sigma - deltaSigma));
    results.mDistance = distance;
    float initialBearing = (float) Math.atan2(cosU2 * sinLambda,
        cosU1 * sinU2 - sinU1 * cosU2 * cosLambda);
    initialBearing *= 180.0 / Math.PI;
    results.mInitialBearing = initialBearing;
    float finalBearing = (float) Math.atan2(cosU1 * sinLambda,
            -sinU1 * cosU2 + cosU1 * sinU2 * cosLambda);
    finalBearing *= 180.0 / Math.PI;
    results.mFinalBearing = finalBearing;
    results.mLat1 = lat1;
    results.mLat2 = lat2;
    results.mLon1 = lon1;
    results.mLon2 = lon2;
}


Answer 13:

只是使用的距离公式Sqrt( (x2-x1)^2 + (y2-y1)^2 )



文章来源: How to find distance from the latitude and longitude of two locations?