I have a numpy array that looks like the following:
array([[0],[1],[1]])
And I want it to be represented as the one hot encoded equivalent:
array([[1,0],[0,1],[0,1]])
Any body have any ideas? I tried using sklearn.preprocessing.LabelBinarizer but this just re-produces the input.
Thanks.
EDIT
As requested, here is the code using LabelBinarizer
from sklearn.preprocessing import LabelBinarizer
train_y = np.array([[0],[1],[1]])
lb = LabelBinarizer()
lb.fit(train_y)
label_vecs = lb.transform(train_y)
Output:
array([[0],[1],[1]])
Note that it does state in the documentation 'Binary targets transform to a column vector'
To use sklearn
, it seems we could use OneHotEncoder
, like so -
from sklearn.preprocessing import OneHotEncoder
train_y = np.array([[0],[1],[1]]) # Input
enc = OneHotEncoder()
enc.fit(train_y)
out = enc.transform(train_y).toarray()
Sample inputs, outputs -
In [314]: train_y
Out[314]:
array([[0],
[1],
[1]])
In [315]: out
Out[315]:
array([[ 1., 0.],
[ 0., 1.],
[ 0., 1.]])
In [320]: train_y
Out[320]:
array([[9],
[4],
[1],
[6],
[2]])
In [321]: out
Out[321]:
array([[ 0., 0., 0., 0., 1.],
[ 0., 0., 1., 0., 0.],
[ 1., 0., 0., 0., 0.],
[ 0., 0., 0., 1., 0.],
[ 0., 1., 0., 0., 0.]])
Another approach with initialization
-
def initialization_based(A): # A is Input array
a = np.unique(A, return_inverse=1)[1]
out = np.zeros((a.shape[0],a.max()+1),dtype=int)
out[np.arange(out.shape[0]), a.ravel()] = 1
return out
Another with broadcasting
-
def broadcasting_based(A): # A is Input array
a = np.unique(A, return_inverse=1)[1]
return (a.ravel()[:,None] == np.arange(a.max()+1)).astype(int)