在一对-所有SVM(使用LIBSVM)10倍交叉验证(10 fold cross-validatio

2019-07-17 13:13发布

我想要做一个10折交叉验证在我的一对,所有 支持向量机在MATLAB分类。

我试图以某种方式混合这两个相关的答案:

  • 在LIBSVM多类分类
  • 在MATLAB 10倍SVM分类的示例

但是,当我是新来的MATLAB和它的语法,我没有管理,使其工作至今。

在另一方面,我看到了有关交叉验证的只是下面的几行LIBSVM README文件,我找不到任何相关的例子有:

选项-V随机数据分成n个部分,并且计算交叉验证准确性/意味着它们平方误差。

见LIBSVM FAQ对于输出的意义。

谁能给我提供10倍交叉验证和一对 - 所有分类的例子吗?

Answer 1:

主要有两个原因,我们做交叉验证 :

  • 作为测试方法,它为我们提供了我们模型的泛化功率几乎无偏估计(通过避免过度拟合)
  • 作为一种方法模式选择 (例如:找到最好的Cgamma在训练数据参数,请参阅这篇文章的例子)

对于我们感兴趣的是第一种情况下,该过程涉及培训k每个折叠模型,然后训练一个最终的模型在整个训练集。 我们报告在K-褶皱平均准确。

现在,因为我们使用一个-VS-所有的方法来处理多类问题,每个模型由N支持向量机(每类)。


以下是实现一个-VS-所有方法包装函数:

function mdl = libsvmtrain_ova(y, X, opts)
    if nargin < 3, opts = ''; end

    %# classes
    labels = unique(y);
    numLabels = numel(labels);

    %# train one-against-all models
    models = cell(numLabels,1);
    for k=1:numLabels
        models{k} = libsvmtrain(double(y==labels(k)), X, strcat(opts,' -b 1 -q'));
    end
    mdl = struct('models',{models}, 'labels',labels);
end

function [pred,acc,prob] = libsvmpredict_ova(y, X, mdl)
    %# classes
    labels = mdl.labels;
    numLabels = numel(labels);

    %# get probability estimates of test instances using each 1-vs-all model
    prob = zeros(size(X,1), numLabels);
    for k=1:numLabels
        [~,~,p] = libsvmpredict(double(y==labels(k)), X, mdl.models{k}, '-b 1 -q');
        prob(:,k) = p(:, mdl.models{k}.Label==1);
    end

    %# predict the class with the highest probability
    [~,pred] = max(prob, [], 2);
    %# compute classification accuracy
    acc = mean(pred == y);
end

这里是功能,支持交叉验证:

function acc = libsvmcrossval_ova(y, X, opts, nfold, indices)
    if nargin < 3, opts = ''; end
    if nargin < 4, nfold = 10; end
    if nargin < 5, indices = crossvalidation(y, nfold); end

    %# N-fold cross-validation testing
    acc = zeros(nfold,1);
    for i=1:nfold
        testIdx = (indices == i); trainIdx = ~testIdx;
        mdl = libsvmtrain_ova(y(trainIdx), X(trainIdx,:), opts);
        [~,acc(i)] = libsvmpredict_ova(y(testIdx), X(testIdx,:), mdl);
    end
    acc = mean(acc);    %# average accuracy
end

function indices = crossvalidation(y, nfold)
    %# stratified n-fold cros-validation
    %#indices = crossvalind('Kfold', y, nfold);  %# Bioinformatics toolbox
    cv = cvpartition(y, 'kfold',nfold);          %# Statistics toolbox
    indices = zeros(size(y));
    for i=1:nfold
        indices(cv.test(i)) = i;
    end
end

最终,这里是简单的演示来说明用法:

%# laod dataset
S = load('fisheriris');
data = zscore(S.meas);
labels = grp2idx(S.species);

%# cross-validate using one-vs-all approach
opts = '-s 0 -t 2 -c 1 -g 0.25';    %# libsvm training options
nfold = 10;
acc = libsvmcrossval_ova(labels, data, opts, nfold);
fprintf('Cross Validation Accuracy = %.4f%%\n', 100*mean(acc));

%# compute final model over the entire dataset
mdl = libsvmtrain_ova(labels, data, opts);

与此相比,对所使用默认的LIBSVM单VS单的方式:

acc = libsvmtrain(labels, data, sprintf('%s -v %d -q',opts,nfold));
model = libsvmtrain(labels, data, strcat(opts,' -q'));


Answer 2:

它可能会产生混淆你的两个问题一个是不是LIBSVM。 你应该尝试调整这个答案而忽略其他。

你应该选择的褶皱,并完成其余完全一样的链接的问题。 假设已经被加载到数据data和标签为labels

n = size(data,1);
ns = floor(n/10);
for fold=1:10,
    if fold==1,
        testindices= ((fold-1)*ns+1):fold*ns;
        trainindices = fold*ns+1:n;
    else
        if fold==10,
            testindices= ((fold-1)*ns+1):n;
            trainindices = 1:(fold-1)*ns;
        else
            testindices= ((fold-1)*ns+1):fold*ns;
            trainindices = [1:(fold-1)*ns,fold*ns+1:n];
         end
    end
    % use testindices only for testing and train indices only for testing
    trainLabel = label(trainindices);
    trainData = data(trainindices,:);
    testLabel = label(testindices);
    testData = data(testindices,:)
    %# train one-against-all models
    model = cell(numLabels,1);
    for k=1:numLabels
        model{k} = svmtrain(double(trainLabel==k), trainData, '-c 1 -g 0.2 -b 1');
    end

    %# get probability estimates of test instances using each model
    prob = zeros(size(testData,1),numLabels);
    for k=1:numLabels
        [~,~,p] = svmpredict(double(testLabel==k), testData, model{k}, '-b 1');
        prob(:,k) = p(:,model{k}.Label==1);    %# probability of class==k
    end

    %# predict the class with the highest probability
    [~,pred] = max(prob,[],2);
    acc = sum(pred == testLabel) ./ numel(testLabel)    %# accuracy
    C = confusionmat(testLabel, pred)                   %# confusion matrix
end


文章来源: 10 fold cross-validation in one-against-all SVM (using LibSVM)