I want to aggregate (sum up) the following product list by groups (see below):
prods <- list("101.2000"=data.frame(1,2,3),
"102.2000"=data.frame(4,5,6),
"103.2000"=data.frame(7,8,9),
"104.2000"=data.frame(1,2,3),
"105.2000"=data.frame(4,5,6),
"106.2000"=data.frame(7,8,9),
"101.2001"=data.frame(1,2,3),
"102.2001"=data.frame(4,5,6),
"103.2001"=data.frame(7,8,9),
"104.2001"=data.frame(1,2,3),
"105.2001"=data.frame(4,5,6),
"106.2001"=data.frame(7,8,9))
test= list("100.2000"=data.frame(2,3,5),
"100.2001"=data.frame(4,5,6))
names <- c("A", "B", "C")
prods <- lapply(prods, function (x) {colnames(x) <- names; return(x)})
Each element of the product list (prods) has a name combination of the product number and the year (e.g. 101.2000 --> 101 = prod nr. and 2000 = year). And the groups only contain product numbers for the aggregation.
group1 <- c(101, 106)
group2 <- c(102, 104)
group3 <- c(105, 103)
My expected result, shows the aggregated product groups by year:
$group1.2000
A B C
1 8 10 12
$group2.2000
A B C
1 5 7 9
$group3.2000
A B C
1 11 13 15
$group1.2001
A B C
1 8 10 12
$group2.2001
A B C
1 5 7 9
$group3.2001
A B C
1 11 13 15
So far, I tried this way: First I decomposed the names of prods
into product numbers:
prodnames <- names(prods)
prodnames_sub <- gsub("\\..*.","", prodnames)
And then I tried to aggregate using lapply:
lapply(prods, function(x) aggregate( ... , FUN = sum)
However, I didn't find how to implement the previous product numbers in the aggregation function. Ideas? Thanks