I have a Python data frame which includes a column called "SEGMENT". I want to break the column up into three columns. Please see my desired output highlighted in yellow.
Below is the code I have tried. Unfortunately I can't even get the first replace statement to work. The : does not get replaced by -. Any help is greatly appreciated!
df_stack_ranking['CURRENT_AUM_SEGMENT'] = df_stack_ranking['CURRENT_AUM_SEGMENT'].replace(':', '-')
s = df_stack_ranking['CURRENT_AUM_SEGMENT'].str.split(' ').apply(Series, 1).stack()
s.index = s.index.droplevel(-1)
s.name = 'SEGMENT'
df_stack_ranking.join(s.apply(lambda x: Series(x.split(':'))))
Setup
df = pd.DataFrame({'SEGMENT': {0: 'Hight:33-48', 1: 'Hight:33-48', 2: 'Very Hight:80-88'}})
df
Out[17]:
SEGMENT
0 Hight:33-48
1 Hight:33-48
2 Very Hight:80-88
Solution
use split to break the column to 3 parts and then expand to create a new DF.
df.SEGMENT.str.split(':|-',expand=True)\
.rename(columns=dict(zip(range(3),\
['SEGMENT','SEGMENT RANGE LOW','SEGMENT RANGE HIGH'])))
Out[13]:
SEGMENT SEGMENT RANGE LOW SEGMENT RANGE HIGH
0 Hight 33 48
1 Hight 33 48
2 Very Hight 80 88
Use str.split
by :
or (|)
\s*-\s*
(\s*
means zero or more whitespaces):
df = pd.DataFrame({'SEGMENT': ['Hight: 33 - 48', 'Hight: 33 - 48', 'Very Hight: 80 - 88']})
cols = ['SEGMENT','SEGMENT RANGE LOW','SEGMENT RANGE HIGH']
df[cols] = df['SEGMENT'].str.split(':\s*|\s*-\s*',expand=True)
print (df)
SEGMENT SEGMENT RANGE LOW SEGMENT RANGE HIGH
0 Hight 33 48
1 Hight 33 48
2 Very Hight 80 88
Solution with str.extract
:
cols = ['SEGMENT','SEGMENT RANGE LOW','SEGMENT RANGE HIGH']
df[cols] = df['SEGMENT'].str.extract('([A-Za-z\s*]+):\s*(\d+)\s*-\s*(\d+)', expand = True)
print (df)
SEGMENT SEGMENT RANGE LOW SEGMENT RANGE HIGH
0 Hight 33 48
1 Hight 33 48
2 Very Hight 80 88
Because I like naming columns from the str.extract
regex
regex = '\s*(?P<SEGMENT>\S+)\s*:\s*(?P<SEGMENT_RANGE_LOW>\S+)\s*-\s*(?P<SEGMENT_RANGE_HIGH>\S+)\s*'
df.SEGMENT.str.extract(regex, expand=True)
SEGMENT SEGMENT_RANGE_LOW SEGMENT_RANGE_HIGH
0 High 33 48
1 High 33 48
2 High 80 88
Setup
df = pd.DataFrame({'SEGMENT': ['High: 33 - 48', 'High: 33 - 48', 'Very High: 80 - 88']})
columns = ['SEGMENT', 'SEGMENT RANGE LOW', 'SEGMENT RANGE HIGH']
df['temp'] = df['SEGMENT'].str.replace(': ','-').str.split('-')
for i, c in enumerate(columns):
df[c] = df['temp'].apply(lambda x: x[i])
del df['temp']
Replace colon with a hyphen and then split on hyphen to get list of values for the 3 columns. Then assign values to each of the 3 columns and delete the temporary column.
I would do this with the str.extract using regex
df.SEGMENT.str.extract('([A-Za-z ]+):(\d+)-(\d+)', expand = True).rename(columns = {0: 'SEGMENT', 1: 'SEGMENT RANGE LOW', 2: 'SEGMENT RANGE HIGH'})
SEGMENT SEGMENT RANGE LOW SEGMENT RANGE HIGH
0 High 33 48
1 High 33 48
2 Very High 80 88