Puzzle taken from Gardner

2019-07-13 18:19发布

问题:

I'm trying to solve the following puzzle in Prolog:

Ten cells numbered 0,...,9 inscribe a 10-digit number such that each cell, say i, indicates the total number of occurrences of the digit i in this number. Find this number. The answer is 6210001000.

This is what I wrote in Prolog but I'm stuck, I think there is something wrong with my ten_digit predicate:

%count: used to count number of occurrence of an element in a list

count(_,[],0).
count(X,[X|T],N) :-
    count(X,T,N2),
    N is 1 + N2.
count(X,[Y|T],Count) :-
    X \= Y,
    count(X,T,Count).

%check: f.e. position = 1, count how many times 1 occurs in list and check if that equals the value at position 1
check(Pos,List) :-
    count(Pos,List,Count),
    valueOf(Pos,List,X),
    X == Count.

%valueOf: get the value from a list given the index
valueOf(0,[H|_],H).
valueOf(I,[_|T],Z) :-
    I2 is I-1,
    valueOf(I2,T,Z).

%ten_digit: generate the 10-digit number    
ten_digit(X):-
    ten_digit([0,1,2,3,4,5,6,7,8,9],X).

ten_digit([],[]).
ten_digit([Nul|Rest],Digits) :-
    check(Nul,Digits),
    ten_digit(Rest,Digits).

How do I solve this puzzle?

回答1:

Check out the clpfd constraint global_cardinality/2.

For example, using SICStus Prolog or SWI:

:- use_module(library(clpfd)).

ten_cells(Ls) :-
        numlist(0, 9, Nums),
        pairs_keys_values(Pairs, Nums, Ls),
        global_cardinality(Ls, Pairs).

Sample query and its result:

?- time((ten_cells(Ls), labeling([ff], Ls))).
1,359,367 inferences, 0.124 CPU in 0.124 seconds (100% CPU, 10981304 Lips)
Ls = [6, 2, 1, 0, 0, 0, 1, 0, 0, 0] ;
319,470 inferences, 0.028 CPU in 0.028 seconds (100% CPU, 11394678 Lips)
false.

This gives you one solution, and also shows that it is unique.



回答2:

CLP(FD) rules... solving this puzzle in plain Prolog is not easy...

ten_digit(Xs):-
    length(Xs, 10),
    assign(Xs, Xs, 0).

assign([], _, 10).
assign([X|Xs], L, P) :-
    member(X, [9,8,7,6,5,4,3,2,1,0]),
    count(L, P, X),
    Q is P+1,
    assign(Xs, L, Q),
    count(L, P, X).

count(L, P, 0) :- maplist(\==(P), L).
count([P|Xs], P, C) :-
    C > 0,
    B is C-1,
    count(Xs, P, B).
count([X|Xs], P, C) :-
    X \== P,
    C > 0,
    count(Xs, P, C).

this is far less efficient than @mat solution:

?- time(ten_digit(L)),writeln(L).
% 143,393 inferences, 0.046 CPU in 0.046 seconds (100% CPU, 3101601 Lips)
[6,2,1,0,0,0,1,0,0,0]
L = [6, 2, 1, 0, 0, 0, 1, 0, 0|...] ;
% 11,350,690 inferences, 3.699 CPU in 3.705 seconds (100% CPU, 3068953 Lips)
false.

count/3 acts in a peculiar way... it binds free variables up to the current limit, then check no more are bounded.

edit adding a cut, the snippet becomes really fast:

...
assign(Xs, L, Q),
!, count(L, P, X).

?- time(ten_digit(L)),writeln(L).
% 137,336 inferences, 0.045 CPU in 0.045 seconds (100% CPU, 3075529 Lips)
[6,2,1,0,0,0,1,0,0,0]
L = [6, 2, 1, 0, 0, 0, 1, 0, 0|...] ;
% 3 inferences, 0.000 CPU in 0.000 seconds (86% CPU, 54706 Lips)
false.


回答3:

Sorry, I could not resist. This problem can also be conveniently expressed as a Mixed Integer Programming (MIP) model. A little bit more mathy than Prolog.

The results are the same:

---- VAR n  digit i

              LOWER          LEVEL          UPPER         MARGINAL

digit0        -INF            6.0000        +INF             .          
digit1        -INF            2.0000        +INF             .          
digit2        -INF            1.0000        +INF             .          
digit3        -INF             .            +INF             .          
digit4        -INF             .            +INF             .          
digit5        -INF             .            +INF             .          
digit6        -INF            1.0000        +INF             .          
digit7        -INF             .            +INF             .          
digit8        -INF             .            +INF             .          
digit9        -INF             .            +INF             .