In order to test some functionality I would like to create a DataFrame
from a string. Let's say my test data looks like:
TESTDATA="""col1;col2;col3
1;4.4;99
2;4.5;200
3;4.7;65
4;3.2;140
"""
What is the simplest way to read that data into a Pandas DataFrame
?
A simple way to do this is to use StringIO
and pass that to the pandas.read_csv
function. E.g:
import sys
if sys.version_info[0] < 3:
from StringIO import StringIO
else:
from io import StringIO
import pandas as pd
TESTDATA = StringIO("""col1;col2;col3
1;4.4;99
2;4.5;200
3;4.7;65
4;3.2;140
""")
df = pd.read_csv(TESTDATA, sep=";")
A traditional variable-width CSV is unreadable for storing data as a string variable. Consider fixed-width pipe-separated data instead. Various IDEs and editors may have a plugin to format pipe-separated text into a neat table.
The following works for me. To use it, store it into a file, e.g. pandas_util.py
. An example is included in the function's docstring. If you're using a version of Python older than 3.6, delete the type annotations from the function definition line.
import re
import pandas as pd
def read_pipe_separated_str(str_input: str, **kwargs) -> pd.DataFrame:
"""Read a Pandas object from a pipe-separated table contained within a string.
Example:
| int_score | ext_score | eligible |
| | 701 | True |
| 221.3 | 0 | False |
| | 576 | True |
| 300 | 600 | True |
The leading and trailing pipes are optional, but if one is present, so must be the other.
`kwargs` are passed to `read_csv`. They must not include `sep`.
In PyCharm, the "Pipe Table Formatter" plugin has a "Format" feature that can be used to neatly format a table.
"""
# Ref: https://stackoverflow.com/a/46471952/
substitutions = [
('^ *', ''), # Remove leading spaces
(' *$', ''), # Remove trailing spaces
(r' *\| *', '|'), # Remove spaces between columns
]
if all(line.lstrip().startswith('|') and line.rstrip().endswith('|') for line in str_input.strip().split('\n')):
substitutions.extend([
(r'^\|', ''), # Remove redundant leading delimiter
(r'\|$', ''), # Remove redundant trailing delimiter
])
for pattern, replacement in substitutions:
str_input = re.sub(pattern, replacement, str_input, flags=re.MULTILINE)
return pd.read_csv(pd.compat.StringIO(str_input), sep='|', **kwargs)
Non-working alternative:
The code below doesn't work properly because it adds an empty column on both the left and right sides.
df = pd.read_csv(pd.compat.StringIO(df_str), sep=r'\s*\|\s*', engine='python')
A quick and easy solution for interactive work is to copy-and-paste the text by loading the data from the clipboard.
Select the content of the string with your mouse:
In the Python shell use read_clipboard()
>>> pd.read_clipboard()
col1;col2;col3
0 1;4.4;99
1 2;4.5;200
2 3;4.7;65
3 4;3.2;140
Use the appropriate separator:
>>> pd.read_clipboard(sep=';')
col1 col2 col3
0 1 4.4 99
1 2 4.5 200
2 3 4.7 65
3 4 3.2 140
>>> df = pd.read_clipboard(sep=';') # save to dataframe