I'm trying to build a CNN that classify object in 3 main classes.The three objects consist of a lamborghini , cylinder head and a piece of plane. My data set consists of 6580 images , almost 2200 image for each class.You can see my dataset on google drive dataset. The architecture of my CNN is AlexNet , but I've modified the output of fully connected layer 8 from 1000 to 3. I have used these settings for training
test_iter:1000
test_interval:1000
base_lr:0.001
lr_policy:"step"
gamma:0.1
stepsize:2500
max_iter:40000
momentum:0.9
weight_decay:0.0005
But , the problem is when I deploy my model after training the result is always the following {'prob': array([[ 0.33333334, 0.33333334, 0.33333334]], dtype=float32)}
.
the code below , is my script to load the model and output the vector of probabilities.
import numpy as np
import matplotlib.pyplot as plt
import sys
import caffe
import cv2
MODEL_FILE ='deploy_ex0.prototxt'
PRETRAINED='snapshot_ex0_1_model_iter_40000.caffemodel'
caffe.set_mode_cpu()
net = caffe.Net(MODEL_FILE, PRETRAINED, caffe.TEST)
#preprocessing
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
#mean substraction
mean_file = np.array([104,117,123])
transformer.set_mean('data', mean_file)
transformer.set_transpose('data', (2,0,1))
transformer.set_channel_swap('data', (2,1,0))
transformer.set_raw_scale('data', 255.0)
#batch size
net.blobs['data'].reshape(1,3,227,227)
#load image in data layer
im=cv2.imread('test.jpg', cv2.IMREAD_COLOR)
img =cv2.resize(im, (227,227))
net.blobs['data'].data[...] = transformer.preprocess('data', img)
#compute
out=net.forward()
print out
I am wondering why I have a result like this ? would you help me to debug my CNN ?
Also, after training I got these results
I0421 06:56:12.285953 2224 solver.cpp:317] Iteration 40000, loss = 5.06557e-05
I0421 06:56:12.286027 2224 solver.cpp:337] Iteration 40000, Testing net (#0)
I0421 06:58:32.159469 2224 solver.cpp:404] Test net output #0: accuracy = 0.99898
I0421 06:58:32.159626 2224 solver.cpp:404] Test net output #1: loss = 0.00183688 (* 1 = 0.00183688 loss)
I0421 06:58:32.159643 2224 solver.cpp:322] Optimization Done.
I0421 06:58:32.159654 2224 caffe.cpp:222] Optimization Done.
Thank you
EDIT AFTER ANSWER OF 11 MAY :
I used a simple model 1 conv , 1 reul , 1 pool and 2 fully connected layers.. The code below is the architecture specification :
name:"CNN"
layer {
name: "convnet"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror:true
crop_size:227
mean_value:87.6231
mean_value:87.6757
mean_value:87.1677
#mean_file:"/home/jaba/caffe/data/diota_model/mean.binaryproto"
}
data_param {
source: "/home/jaba/caffe/data/diota_model/train_lmdb"
batch_size: 32
backend: LMDB
}
}
layer {
name: "convnet"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror:true
crop_size:227
mean_value:87.6231
mean_value:87.6757
mean_value:87.1677
#mean_file:"/home/jaba/caffe/data/diota_model/mean.binaryproto"
}
data_param {
source: "/home/jaba/caffe/data/diota_model/val_lmdb"
batch_size: 20
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool1"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 300
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer
{
name:"ip2"
type:"InnerProduct"
bottom:"ip1"
top:"ip2"
param
{
lr_mult:1
}
param
{
lr_mult:2
}
inner_product_param
{
num_output: 3
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "ip1"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip1"
bottom: "label"
top: "loss"
}
I trained this CNN for 22 epochs and I got accuracy 86 %. For the solver parameters I used :
net: "/home/jaba/caffe/data/diota_model/simple_model/train_val.prototxt"
test_iter: 50
test_interval: 100
base_lr: 0.00001
momentum: 0.9
weight_decay: 0.0005
lr_policy: "inv"
gamma: 0.0001
power: 0.75
display: 100
max_iter: 3500
snapshot: 100
snapshot_prefix: "/home/jaba/caffe/data/diota_model/simple_model/snap_shot_model"
solver_mode: GPU
Now , when I deploy the model it does not return the same vector of probabilities. But , there is one issue , is when I loaded the model and I tested it on validation_lmdb folder , I did not get the same accuracy value , I got almost 56% .
I used the script below to calculate the accuracy :
import os
import glob
#import cv2
import caffe
import lmdb
import numpy as np
from caffe.proto import caffe_pb2
MODEL_FILE ='deploy.prototxt'
PRETRAINED='snap_shot_model_iter_3500.caffemodel'
caffe.set_mode_cpu()
#load_model
net = caffe.Net(MODEL_FILE, PRETRAINED, caffe.TEST)
#load input and configure preprocessing
#mean_file = np.array([104,117,123])
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
#transformer.set_mean('data', mean_file)
transformer.set_transpose('data', (2,0,1))
transformer.set_channel_swap('data', (2,1,0))
transformer.set_raw_scale('data', 255.0)
#fixing the batch size
net.blobs['data'].reshape(1,3,227,227)
lmdb_env=lmdb.open('/home/jaba/caffe/data/diota_model/val1_lmdb')
lmdb_txn=lmdb_env.begin()
lmdb_cursor=lmdb_txn.cursor()
datum=caffe_pb2.Datum()
correct_predictions=0
for key,value in lmdb_cursor:
datum.ParseFromString(value)
label=datum.label
data=caffe.io.datum_to_array(datum)
image=np.transpose(data,(1,2,0))
net.blobs['data'].data[...]=transformer.preprocess('data',image)
out=net.forward()
out_put=out['prob'].argmax()
if label==out_put:
correct_predictions=correct_predictions+1
print 'accuracy :'
print correct_predictions/1002.0
I changed the size of the data set 1002 for testing and 4998 for learning . Would you give me some suggestions to solve the issue ?
Thanks !