I tried to understand the 5 fold cross validation algorithm in Caret package but I could not find out how to get train set and test set for each fold and I also could not find this from the similar suggested questions. Imagine if I want to do cross validation by random forest method, I do the following:
set.seed(12)
train_control <- trainControl(method="cv", number=5,savePredictions = TRUE)
rfmodel <- train(Species~., data=iris, trControl=train_control, method="rf")
first_holdout <- subset(rfmodel$pred, Resample == "Fold1")
str(first_holdout)
'data.frame': 90 obs. of 5 variables:
$ pred : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1
$ obs : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1
$ rowIndex: int 2 3 9 11 25 29 35 36 41 50 ...
$ mtry : num 2 2 2 2 2 2 2 2 2 2 ...
$ Resample: chr "Fold1" "Fold1" "Fold1" "Fold1" ...
Are these 90 observations in Fold1 used as training set? If yes then where is the test set for this fold?