I have a pandas HDFStore that I am try to select from. I would like to select data between a two timestamps with an id in a large np.array. The following code works but takes up too much memory only when queried for membership in a list. If I use a datetimeindex and a range, the memory footprint is 95% less.
#start_ts, end_ts are timestamps
#instruments is an array of python objects
not_memory_efficient = adj_data.select("US", [Term("date",">=", start_ts),
Term("date", "<=", end_ts),
Term("id", "=", instruments)])
memory_efficient = adj_data.select("US", [Term("date",">=", start_ts),
Term("date", "<=", end_ts),)
Is there a more memory efficient way to do this in HDFStore? Should I set the index to the "sec_id"? (I can also use the chunksize option and concat myself, but that seems to be a bit of a hack.)
Edits:
The hdfstore is created by pd.HDFStore creating a dataframe and storing such as this. I made a mistake earlier
def write_data(country_data, store_file):
for country in country_data:
if len(country_data[country]) == 0:
continue
df = pd.concat(country_data[country], ignore_index=True)
country_data[country] = []
store_file.append(country, df, format="t")
As requested, here is the ptdump for this table: https://gist.github.com/MichaelWS/7980846
also, here is the df: https://gist.github.com/MichaelWS/7981451
To memorialize this for other users.
In HDFStore, is required to designate certain columns as data_columns if they are not the index in order to later query then.
Docs are here
Create a frame
In [23]: df = DataFrame(dict(date = pd.date_range('20130101',periods=10), id = list('abcabcabcd'), C = np.random.randn(10)))
In [28]: df
Out[28]:
C date id
0 0.605701 2013-01-01 00:00:00 a
1 0.451346 2013-01-02 00:00:00 b
2 0.479483 2013-01-03 00:00:00 c
3 -0.012589 2013-01-04 00:00:00 a
4 -0.028552 2013-01-05 00:00:00 b
5 0.737100 2013-01-06 00:00:00 c
6 -1.050292 2013-01-07 00:00:00 a
7 0.137444 2013-01-08 00:00:00 b
8 -0.327491 2013-01-09 00:00:00 c
9 -0.660220 2013-01-10 00:00:00 d
[10 rows x 3 columns]
Save to hdf WITHOUT data_columns
In [24]: df.to_hdf('test.h5','df',mode='w',format='table')
0.13 will report this error (0.12 will just silently ignore)
In [25]: pd.read_hdf('test.h5','df',where='date>20130101 & date<20130105 & id=["b","c"]')
ValueError: The passed where expression: date>20130101 & date<20130105 & id=["b","c"]
contains an invalid variable reference
all of the variable refrences must be a reference to
an axis (e.g. 'index' or 'columns'), or a data_column
The currently defined references are: index,columns
Set all the columns as data columns (can also be a specific list of columns)
In [26]: df.to_hdf('test.h5','df',mode='w',format='table',data_columns=True)
In [27]: pd.read_hdf('test.h5','df',where='date>20130101 & date<20130105 & id=["b","c"]')
Out[27]:
C date id
1 0.451346 2013-01-02 00:00:00 b
2 0.479483 2013-01-03 00:00:00 c
[2 rows x 3 columns]
Here is a the Table node of ptdump -av
of the file:
/df/table (Table(10,)) ''
description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"C": Float64Col(shape=(), dflt=0.0, pos=1),
"date": Int64Col(shape=(), dflt=0, pos=2),
"id": StringCol(itemsize=1, shape=(), dflt='', pos=3)}
byteorder := 'little'
chunkshape := (2621,)
autoindex := True
colindexes := {
"date": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"index": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"C": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"id": Index(6, medium, shuffle, zlib(1)).is_csi=False}
/df/table._v_attrs (AttributeSet), 19 attributes:
[CLASS := 'TABLE',
C_dtype := 'float64',
C_kind := ['C'],
FIELD_0_FILL := 0,
FIELD_0_NAME := 'index',
FIELD_1_FILL := 0.0,
FIELD_1_NAME := 'C',
FIELD_2_FILL := 0,
FIELD_2_NAME := 'date',
FIELD_3_FILL := '',
FIELD_3_NAME := 'id',
NROWS := 10,
TITLE := '',
VERSION := '2.7',
date_dtype := 'datetime64',
date_kind := ['date'],
id_dtype := 'string8',
id_kind := ['id'],
index_kind := 'integer']
The key thing to note is that the data_columns are separate in the 'description', AND they are setup as indexes.
You cannot supply a large list to be selected through and not have the entire pandas object loaded into memory. This is a limit in how numexpr operates.
pandas issue: https://github.com/pydata/pandas/issues/5717
pytables issue: http://sourceforge.net/mailarchive/message.php?msg_id=30390757