Att, I want to create multiple columns from lambda function's multiple return values in python DataFrame.
Similar with the last line of my demo code.
Is there any way to achieve this?
y = np.random.rand(2,5)
df = pd.DataFrame(y, columns = ["y1", "y2", "y3", "y4", "y5"])
print(df)
def f_polyfit(y1, y2, y3, y4, y5, degree):
y = [y1, y2, y3, y4, y5]
x = [1, 2, 3, 4, 5]
coeffs = np.polyfit(x, y, degree)
coeffs = coeffs.tolist()
# constructe the polynomial formula
p = np.poly1d(coeffs)
# fit values, and mean
y_fit = p(x)
y_avg = np.sum(y)/len(y)
ssreg = np.sum((y_fit-y_avg)**2)
sstot = np.sum((y - y_avg)**2)
R2 = ssreg / sstot
return coeffs[0], R2
# df["slope"], df["R2"] = zip(df.apply(lambda x:f_polyfit(x["y1"], x["y2"], x["y3"], x["y4"], x["y5"], degree = 1), axis = 1))