Pandas DataFrame Pivot Using Dates and Counts

2019-07-12 14:46发布

问题:

I've taken a large data file and managed to use groupby and value_counts to get the dataframe below. However, I want to format it so the company is on the left, with the months on top, and each number would be the number of calls that month, the third column.

Here is my code to sort:

data = pd.DataFrame.from_csv('MYDATA.csv')

data[['recvd_dttm','CompanyName']]
data['recvd_dttm'].value_counts()  

count = data.groupby(["recvd_dttm","CompanyName"]).size()
df = pd.DataFrame(count)
df.pivot(index='recvd_dttm', columns='CompanyName', values='NumberCalls')

Here is my output df=

recvd_dttm      CompanyName                           
1/1/2015 11:42  Company 1      1
1/1/2015 14:29  Company 2      1
1/1/2015 8:12   Company 4      1
1/1/2015 9:53   Company 1      1
1/10/2015 11:38 Company 3      1
1/10/2015 11:31 Company 5      1
1/10/2015 12:04 Company 2      1

I want

Company     Jan Feb Mar Apr May
Company 1   10  4   45  40  34
Company 2   2   5   56  5   57
Company 3   3   7   71  6   53
Company 4   4   4   38  32  2
Company 5   20  3   3   3   29

I know that there is a nifty pivot function for dataframes from this documentation http://pandas.pydata.org/pandas-docs/stable/reshaping.html for pandas, so I've been trying to use df.pivot(index='recvd_dttm', columns='CompanyName', values='NumberCalls')

One problem is that the third column doesn't have a name, so I can't use it for values = 'NumberCalls'. The second problem is figuring out how to take the datetime format in my dataframe and make it display by month only.

Edit: CompanyName is the first column, recvd_dttm is the 15th column. This is my code after some more attempts:

data = pd.DataFrame.from_csv('MYDATA.csv')

data[['recvd_dttm','CompanyName']]
data['recvd_dttm'].value_counts()
RatedCustomerCallers = data['CompanyName'].value_counts()


count = data.groupby(["recvd_dttm","CompanyName"]).size()
df = pd.DataFrame(count).set_index('recvd_dttm').sort_index()
df.index = pd.to_datetime(df.index, format='%m/%d/%Y %H:%M')
result = df.groupby([lambda idx: idx.month, 'CompanyName']).agg({df.columns[1]: sum}).reset_index()
result.columns = ['Month', 'CompanyName', 'NumberCalls']

result.pivot(index='recvd_dttm', columns='CompanyName', values='NumberCalls')

It is throwing this error: KeyError: 'recvd_dttm' and won't get to the result line.

回答1:

You need to aggregate the data before creating the pivot table. If there is no column name, you can either refer it to df.iloc[:, 1] (the 2nd column) or simply rename the df.

import pandas as pd
import numpy as np

# just simulate your data
np.random.seed(0)
dates = np.random.choice(pd.date_range('2015-01-01 00:00:00', '2015-06-30 00:00:00', freq='1h'), 10000)
company = np.random.choice(['company' + x for x in '1 2 3 4 5'.split()], 10000)
df = pd.DataFrame(dict(recvd_dttm=dates, CompanyName=company)).set_index('recvd_dttm').sort_index()
df['C'] = 1
df.columns = ['CompanyName', '']

Out[34]: 
                    CompnayName   
recvd_dttm                        
2015-01-01 00:00:00    company2  1
2015-01-01 00:00:00    company2  1
2015-01-01 00:00:00    company1  1
2015-01-01 00:00:00    company2  1
2015-01-01 01:00:00    company4  1
2015-01-01 01:00:00    company2  1
2015-01-01 01:00:00    company5  1
2015-01-01 03:00:00    company3  1
2015-01-01 03:00:00    company2  1
2015-01-01 03:00:00    company3  1
2015-01-01 04:00:00    company4  1
2015-01-01 04:00:00    company1  1
2015-01-01 04:00:00    company3  1
2015-01-01 05:00:00    company2  1
2015-01-01 06:00:00    company5  1
...                         ... ..
2015-06-29 19:00:00    company2  1
2015-06-29 19:00:00    company2  1
2015-06-29 19:00:00    company3  1
2015-06-29 19:00:00    company3  1
2015-06-29 19:00:00    company5  1
2015-06-29 19:00:00    company5  1
2015-06-29 20:00:00    company1  1
2015-06-29 20:00:00    company4  1
2015-06-29 22:00:00    company1  1
2015-06-29 22:00:00    company2  1
2015-06-29 22:00:00    company4  1
2015-06-30 00:00:00    company1  1
2015-06-30 00:00:00    company2  1
2015-06-30 00:00:00    company1  1
2015-06-30 00:00:00    company4  1

[10000 rows x 2 columns]

# first groupby month and company name, and calculate the sum of calls, and reset all index
# since we don't have a name for that columns, simply tell pandas it is the 2nd column we try to count on
result = df.groupby([lambda idx: idx.month, 'CompanyName']).agg({df.columns[1]: sum}).reset_index()
# rename the columns
result.columns = ['Month', 'CompanyName', 'counts']

Out[41]: 
    Month CompanyName  counts
0       1    company1     328
1       1    company2     337
2       1    company3     342
3       1    company4     345
4       1    company5     331
5       2    company1     295
6       2    company2     300
7       2    company3     328
8       2    company4     304
9       2    company5     329
10      3    company1     366
11      3    company2     398
12      3    company3     339
13      3    company4     336
14      3    company5     345
15      4    company1     322
16      4    company2     348
17      4    company3     351
18      4    company4     340
19      4    company5     312
20      5    company1     347
21      5    company2     354
22      5    company3     347
23      5    company4     363
24      5    company5     312
25      6    company1     316
26      6    company2     311
27      6    company3     331
28      6    company4     307
29      6    company5     316

# create pivot table
result.pivot(index='CompanyName', columns='Month', values='counts')

Out[44]: 
Month          1    2    3    4    5    6
CompanyName                              
company1     326  297  339  337  344  308
company2     310  318  342  328  355  296
company3     347  315  350  343  347  329
company4     339  314  367  353  343  311
company5     370  331  370  320  357  294