Here's a sample solution for Sliding Window Maximum problem in Java.
Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
I want to get the time and space complexity of this function. Here's what I think would be the answer:
Time: O((n-k)(k * logk))
== O(nklogk)
Space (auxiliary): O(n)
for return int[]
and O(k)
for pq
. Total of O(n)
.
Is this correct?
private static int[] maxSlidingWindow(int[] a, int k) {
if(a == null || a.length == 0) return new int[] {};
PriorityQueue<Integer> pq = new PriorityQueue<Integer>(k, new Comparator<Integer>() {
// max heap
public int compare(Integer o1, Integer o2) {
return o2 - o1;
}
});
int[] result = new int[a.length - k + 1];
int count = 0;
// time: n - k times
for (int i = 0; i < a.length - k + 1; i++) {
for (int j = i; j < i + k; j++) {
// time k*logk (the part I'm not sure about)
pq.offer(a[j]);
}
// logk
result[count] = pq.poll();
count = count + 1;
pq.clear();
}
return result;
}