I have a data frame with 20 players from 4 different teams (5 players per team), each assigned a salary from a fantasy draft. I would like to be able to create all combinations of 8 players whose salaries are equal to or less than 10000 & whose total points are greater than x but excluding any combinations that contains 4 or more players from the same team.
Here is what my data frame looks like:
Team Player K D A LH Points Salary PPS
4 ATN ExoticDeer 6.1 3.3 6.4 306.9 22.209 1622 1.3692
2 ATN Supreme 6.8 5.3 7.1 229.4 21.954 1578 1.3913
1 ATN sasu 3.6 6.4 11.0 95.7 19.357 1244 1.5560
3 ATN eL lisasH 2 2.6 6.1 7.9 29.7 12.037 998 1.2061
5 ATN Nisha 2.7 5.6 7.5 48.2 12.282 955 1.2861
11 CL Swiftending 6.0 5.8 7.8 360.5 22.285 1606 1.3876
13 CL Pajkatt 13.3 7.5 9.3 326.8 37.248 1489 2.5015
15 CL SexyBamboe 6.3 8.5 9.3 168.0 20.660 1256 1.6449
14 CL EGM 2.8 6.0 13.5 78.8 21.988 989 2.2233
12 CL Saksa 2.5 6.5 10.5 59.8 15.898 967 1.6441
51 DBEARS Ace 7.0 3.4 6.9 195.6 23.596 1578 1.4953
31 DBEARS HesteJoe 5.4 5.4 6.1 176.7 16.927 1512 1.1195
61 DBEARS Miggel 2.8 6.8 11.0 141.8 17.818 1212 1.4701
21 DBEARS Noia 3.0 6.0 8.0 36.1 13.161 970 1.3568
41 DBEARS Ryze 2.7 4.7 6.7 74.6 12.166 937 1.2984
8 GB Keyser Soze 6.0 5.0 5.6 316.0 19.120 1602 1.1935
9 GB Madara 5.4 5.3 6.6 334.5 19.405 1577 1.2305
10 GB SkyLark 1.8 5.3 7.0 71.8 10.218 1266 0.8071
7 GB MNT 2.3 5.9 6.1 85.6 9.316 1007 0.9251
6 GB SKANKS224 1.4 7.6 7.4 52.5 7.565 954 0.7930
I am following the general concept described in this post: I want to generate combinations of 5 names from a column in an R data frame, whose values in a different column add up to a certain number or less
tweaking the code to suit my needs. This is what I have so far:
## make a list of all combinations of 8 of Player, Points and Salary
xx <- with(FantasyPlayers, lapply(list(as.character(Player), Points, Salary), combn, 8))
## convert the names to a string,
## find the column sums of the others,
## set the names
yy <- setNames(
lapply(xx, function(x) {
if(typeof(x) == "character") apply(x, 2, toString) else colSums(x)
}),
names(FantasyPlayers)[c(2, 7, 8)]
)
## coerce to data.frame
newdf <- as.data.frame(yy)
Using the above code I am able to generate all possibly lineups of 8 players and then subset that by various criteria (total salary and number of points), but I am struggling when it comes to excluding the lineups where there are more than 3 players from the same team.
I imagine the lineups would need to be excluded from newdf but I don't really know where to begin in doing that.
Here are the dput results:
structure(list(Team = c("ATN", "ATN", "ATN", "ATN", "ATN", "CL",
"CL", "CL", "CL", "CL", "DBEARS", "DBEARS", "DBEARS", "DBEARS",
"DBEARS", "GB", "GB", "GB", "GB", "GB"), Player = structure(c(2L,
5L, 4L, 1L, 3L, 15L, 12L, 14L, 11L, 13L, 16L, 18L, 19L, 20L,
21L, 6L, 7L, 10L, 8L, 9L), .Label = c("eL lisasH 2", "ExoticDeer",
"Nisha", "sasu", "Supreme", "Keyser Soze", "Madara", "MNT", "SKANKS224",
"SkyLark", "EGM", "Pajkatt", "Saksa", "SexyBamboe", "Swiftending",
"Ace", "DruidzOzoneShoc", "HesteJoe", "Miggel", "Noia", "Ryze"
), class = "factor"), K = c(6.1, 6.8, 3.6, 2.6, 2.7, 6, 13.3,
6.3, 2.8, 2.5, 7, 5.4, 2.8, 3, 2.7, 6, 5.4, 1.8, 2.3, 1.4), D = c(3.3,
5.3, 6.4, 6.1, 5.6, 5.8, 7.5, 8.5, 6, 6.5, 3.4, 5.4, 6.8, 6,
4.7, 5, 5.3, 5.3, 5.9, 7.6), A = c(6.4, 7.1, 11, 7.9, 7.5, 7.8,
9.3, 9.3, 13.5, 10.5, 6.9, 6.1, 11, 8, 6.7, 5.6, 6.6, 7, 6.1,
7.4), LH = c(306.9, 229.4, 95.7, 29.7, 48.2, 360.5, 326.8, 168,
78.8, 59.8, 195.6, 176.7, 141.8, 36.1, 74.6, 316, 334.5, 71.8,
85.6, 52.5), Points = c(22.209, 21.954, 19.357, 12.037, 12.282,
22.285, 37.248, 20.66, 21.988, 15.898, 23.596, 16.927, 17.818,
13.161, 12.166, 19.12, 19.405, 10.218, 9.316, 7.565), Salary = c(1622,
1578, 1244, 998, 955, 1606, 1489, 1256, 989, 967, 1578, 1512,
1212, 970, 937, 1602, 1577, 1266, 1007, 954), PPS = c(1.3692,
1.3913, 1.556, 1.2061, 1.2861, 1.3876, 2.5015, 1.6449, 2.2233,
1.6441, 1.4953, 1.1195, 1.4701, 1.3568, 1.2984, 1.1935, 1.2305,
0.8071, 0.9251, 0.793)), .Names = c("Team", "Player", "K", "D",
"A", "LH", "Points", "Salary", "PPS"), class = "data.frame", row.names = c("4",
"2", "1", "3", "5", "11", "13", "15", "14", "12", "51", "31",
"61", "21", "41", "8", "9", "10", "7", "6"))