I have a recarray containing various fields and I want to append an array of datetime objects on to it.
However, it seems like the append_fields
function in numpy.lib.recfunctions
won't let me add an array of objects.
Here's some example code:
import numpy as np
import datetime
import numpy.lib.recfunctions as recfun
dtype= np.dtype([('WIND_WAVE_HGHT', '<f4'), ('WIND_WAVE_PERD', '<f4')])
obs = np.array([(0.1,10.0),(0.2,11.0),(0.3,12.0)], dtype=dtype)
dates = np.array([datetime.datetime(2001,1,1,0),
datetime.datetime(2001,1,1,0),
datetime.datetime(2001,1,1,0)])
# This doesn't work:
recfun.append_fields(obs,'obdate',dates,dtypes=np.object)
I keep getting the error TypeError: Cannot change data-type for object array.
It seems to only be an issue with np.object arrays as I can append other fields ok. Am I missing something?
The problem
In [143]: recfun.append_fields(obs,'test',np.array([None,[],1]))
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-143-5c3de23b09f7> in <module>()
----> 1 recfun.append_fields(obs,'test',np.array([None,[],1]))
/usr/local/lib/python3.5/dist-packages/numpy/lib/recfunctions.py in append_fields(base, names, data, dtypes, fill_value, usemask, asrecarray)
615 if dtypes is None:
616 data = [np.array(a, copy=False, subok=True) for a in data]
--> 617 data = [a.view([(name, a.dtype)]) for (name, a) in zip(names, data)]
618 else:
619 if not isinstance(dtypes, (tuple, list)):
/usr/local/lib/python3.5/dist-packages/numpy/lib/recfunctions.py in <listcomp>(.0)
615 if dtypes is None:
616 data = [np.array(a, copy=False, subok=True) for a in data]
--> 617 data = [a.view([(name, a.dtype)]) for (name, a) in zip(names, data)]
618 else:
619 if not isinstance(dtypes, (tuple, list)):
/usr/local/lib/python3.5/dist-packages/numpy/core/_internal.py in _view_is_safe(oldtype, newtype)
363
364 if newtype.hasobject or oldtype.hasobject:
--> 365 raise TypeError("Cannot change data-type for object array.")
366 return
367
TypeError: Cannot change data-type for object array.
So the problem is in this a.view([(name, a.dtype)])
expression. It tries to make a single field structured array from a
. That works with dtypes like int and str, but fails with object
. That failure is in the core view
handling, so isn't likely to change.
In [148]: x=np.arange(3)
In [149]: x.view([('test', x.dtype)])
Out[149]:
array([(0,), (1,), (2,)],
dtype=[('test', '<i4')])
In [150]: x=np.array(['one','two'])
In [151]: x.view([('test', x.dtype)])
Out[151]:
array([('one',), ('two',)],
dtype=[('test', '<U3')])
In [152]: x=np.array([[1],[1,2]])
In [153]: x
Out[153]: array([[1], [1, 2]], dtype=object)
In [154]: x.view([('test', x.dtype)])
...
TypeError: Cannot change data-type for object array.
The fact that recfunctions
requires a separate load indicates that it is somewhat of a backwater, that isn't used a lot, and not under active development. I haven't examined the code in detail, but I suspect a fix would be a kludge.
A fix
Here's a way of adding a new field from scratch. It performs the same basic actions as append_fields
:
Define a new dtype, using the obs
and the new field name and dtype:
In [158]: obs.dtype.descr
Out[158]: [('WIND_WAVE_HGHT', '<f4'), ('WIND_WAVE_PERD', '<f4')]
In [159]: obs.dtype.descr+[('TEST',object)]
Out[159]: [('WIND_WAVE_HGHT', '<f4'), ('WIND_WAVE_PERD', '<f4'), ('TEST', object)]
In [160]: dt1 =np.dtype(obs.dtype.descr+[('TEST',object)])
Make an empty target array, and fill it by copying data by field name:
In [161]: newobs = np.empty(obs.shape, dtype=dt1)
In [162]: for n in obs.dtype.names:
...: newobs[n]=obs[n]
In [167]: dates
Out[167]:
array([datetime.datetime(2001, 1, 1, 0, 0),
datetime.datetime(2001, 1, 1, 0, 0),
datetime.datetime(2001, 1, 1, 0, 0)], dtype=object)
In [168]: newobs['TEST']=dates
In [169]: newobs
Out[169]:
array([( 0.1 , 10., datetime.datetime(2001, 1, 1, 0, 0)),
( 0.2 , 11., datetime.datetime(2001, 1, 1, 0, 0)),
( 0.30000001, 12., datetime.datetime(2001, 1, 1, 0, 0))],
dtype=[('WIND_WAVE_HGHT', '<f4'), ('WIND_WAVE_PERD', '<f4'), ('TEST', 'O')])
datetime64 alternative
With the native numpy datetimes, append works
In [179]: dates64 = dates.astype('datetime64[D]')
In [180]: recfun.append_fields(obs,'test',dates64,usemask=False)
Out[180]:
array([( 0.1 , 10., '2001-01-01'),
( 0.2 , 11., '2001-01-01'), ( 0.30000001, 12., '2001-01-01')],
dtype=[('WIND_WAVE_HGHT', '<f4'), ('WIND_WAVE_PERD', '<f4'), ('test', '<M8[D]')])
append_fields
has some bells-n-whistles that my version doesn't - fill values, masked arrays, recarray, etc.
structured dates array
I could create a structured array with the dates
In [197]: sdates = np.array([(i,) for i in dates],dtype=[('test',object)])
In [198]: sdates
Out[198]:
array([(datetime.datetime(2001, 1, 1, 0, 0),),
(datetime.datetime(2001, 1, 1, 0, 0),),
(datetime.datetime(2001, 1, 1, 0, 0),)],
dtype=[('test', 'O')])
There must be a function that merges fields of existing arrays, but I'm not finding it.
previous work
This felt familiar:
https://github.com/numpy/numpy/issues/2346
TypeError when appending fields to a structured array of size ONE
Adding datetime field to recarray